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1. INTROLXJCTION AND SUI -t4ARY.

Most numerical approximation processes , sixth as interpolation , quadrature ,

finite difference approximation, finite element methods, and so on ,are based

on enact relationships that polynomials (and less frequently, trigonometric

polynomials) satisfy. The simplicity and variety of these identities have

made it possible to construct a vast number of different procedures. These

procedures generally do very well in a region where the function to be

approximated is analytic, and very poorly in a neighborhood of a singularity

of the function.

This paper deals with the approximation of analytic functions f on an

interval, or on a contour. These functions f may or may not have a sin-

gularity, i.e., a point at which f’ does not exist, at the end-points of

the intervals or contours. All of the approximations are derived via the

use of exact relationships that the function C(f,h) , i.e., Whittaker’s

cardinal fimction,satisfies. Corresponding to a function f defined on

the real line R , the function C(f,h) is defined by

(1.1) C(f,h) — 
~ 

f(kh)S(k,h)

whenever this series converges, where h > 0 is the step-size, and where

sin[.~ (x-kh)](1.2) S(k,h) (x)
~~
. (x-kh)

The nun~rical approxiim~tion procedures reported in this paper , and which

are obtainable via the use of S(k,h)0~ as basis functions, where •

•1 
________ _ _ _ _  

_ _ _ _ _  

_ _ _— — .—
-

.~~~~~~--- — — - - -— — —— — --—-—--- ;
~~~~-: 
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denotes a suitable transformation of an interval onto R , have roughly

the same accuracy whether or not the function to be approximated has a sin-

gularity at an end-point of an interval. In the absence of singularities,

this accuracy is usually not as good as that obtainable via polynomial

methods, but if singularities are present, this accuracy is much better

than that of polynomial methods .

The function C(f,h) was discovered by E. 1. Whittaker [55] who studied

the mathematical properties of this function and who used it as a means

of obtaining alternate expressions of entire functions. He called C(f,h)

“a function of royal blood in the family of entire functions,whose distin-

guished properties separate it from its bourgeois brethren”. The study of

this function was later continued and considerably extended by J. M. Whit-

taker [56,57]. T~-~ function C(f,h) then played an important role in

engineering applications in the transmission of information as a convenient

approximation of f (Hartley [16], Nyquist [30], Shannon [37]). Engineers

have since referred to C(f,h) as the “band limited” or “sinc function”

expansion of f

The mathematical study of the accurate trapezoidal formula approximation

of the integral of a function f over R ,

(1.3) J f(x)dx ~ h ~ f(kh)
R

developed independently of the study of C(f,h), although this approximation is
identical to the integral of C(f ,h) over R. It was Goodwin [141 who seemed to be
the first to note the incredible accuracy of this formula for approximating

the integral of certain functions that are analytic in a strip about the real

axis. The incredible accuracy of C(f ,h) and of the trapezoidal rule as

approximation tools in the family of functions that are analytic in a strip

—~~~~ 
- —~~~~~~~~~ 

— _____________ — — —I- 
—



-3-

about the real line was later denxrnstrated in [25,26,27,54].

The application of the trapezoidal formula for approximating an integral

over an interval other than R was investigated in [28,34,39], via the

use of transformations, and it was shown in [45 ,48] that the mst effective

transformations are those that are a conformal map of the domain of analyticity

of the integrand onto a strip about the real axis. Later [49], this trans-

formation idea was used to construct interpolation and approximation formulas

for other intervals as well as for carrying ~ut the approximate solution of

differential [53] and integral equations [18,19,32,36,46,47]. Most recently

[52] all of these approximations were shown to have the optimal functional
- 

1/2
form O(e 

~ 
) for the rate of convergence of the error of an n-point

approximation, whether or not the function being approximated has singularities

at the end-points of the interval (or contour) of approximation.

Although the present paper is mainly a sunmiaty paper, some of the results

in it, such as the results pertaining to the case where a function has a

singularity on the interval of approximation, are new.

The function C(f,h) is replete with beautiful properties and formulas.

The Imown properties relevant to approximations are suninarized in Sec. 2 of

this paper. These properties are basic to the approximation procedures in

later sections of the paper.

rn Sec. 3 of the paper we define a space of functions that are analytic

in a strip about the real line. In this space the identities of the previous

sections are no longer exact, but highly accurate, as shown by the error

bounds.

In Sec. 4 some of the approximations of Sec. 3 are extended to an arbitrary

contour by use of conformal mapping [23,49]. Special attention is given to

the important intervals (0,1] , (-1,1], and [0,.] , and examples are
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given, of approximation rules for these intervals.

Section 5, 6, 7 and 8 deal with applications of the previously constructed

approximation procedures.

In Sec. 5 we consider the approximations of important transforms over the

interval (0 ,ao) : the Laplace, the semi-infinite Fourier, the Mellin and

the Hankel transforms [22].

Sec. 6 deals with approximate procedures for solving ordinary and partial

differential equation boundary value problems [53]. It is here that the

approximation procedures of this paper are particularly powerful, especially

in the cases where the singular behavior of the solution on the boundary is

not known explicitly. The functions S(k,h) ~ (or product of these for the

case of more than one dimension) are the basis functions. These make it

possible to explicitly write down highly accurate expressions of the inner

products in the Galerkin scheme which reduces the differential equation

problem to an algebraic problem, even for the case of nonlinear differential

equations. Examples of the approximate solution of “model” problems illustrate

the application of the method.

In Sec. 7 of the paper we apply some of the approxii~~tions in earlier

parts of the paper to the approximate solution of (singular) integral

equations. Examples are given, illustrating the approximation procedures .

Here, too, the func-tioi~ S(k,h)0$ are very ~~l1 suited for easily obtaining

accurate approximate solutions.

In Sec. 8 we suninarize the main ideas used for the implementation of the

methods on a computer, and we list already existing computer algorithms. In

addition we caution the user against possible computational pitfalls resulting

from inaccurate (or improper) ninnerical evaluation of a function in the

neighborhood of a singularity.

- -~~~~~~~~~
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4 Sec. 9 discusses rates of convergence of the methods of this paper, and

compares these with rates of polynomial methods. It shows, moreover, that
- 

1/2
the O(e Cfl 

~ rate of convergence of the methods of this paper cannot be

improved by any other methods of approximation.

I

4 
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _
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2. PROPERTIES OF ThE CARDINAL FUNCTION.

Just as polynomials satisfy certain exact relationships in the space of

polynomials of the same degree, the same is true of the cardinal function in

a certain space of entire functions.

DEFINITION 2.1.: Let h > 0 , and let B(h) denote the family of functions

f that are analytic in the entire complex plane (C , such that

(2.1) If (z) I <

and such that £ € L2(~) , where R = (~~ ,cx ) . Let k be an integer, and

let us set

sin [~ (z-kh)](2.2) S(k,h) (z) = ____________

Z-

If £ is defined on R , the Whittaker cardinal function for f with

step-size h is defined by

(2.3) C(f,h) (z) ~ f(kh)S(k,h) (z) . 
- -

ku-co

Set

(2.4) — S~~~U,l) (k) (~~)S(j,l)(x)
x k

In particular 3

-~~~~~ - - -~~~~~~ • _
~~_ i -

- _ _ _ _ _



-7-a

o’~ r i if j=k
1= ~

jk 
~ 0 if j*k

~~~~ ~ 0 if ~j =(2.4 a) 4 t...
~~~“ “ (~~]) .1

if j*k

(2) . I ~~2/3 if j =k

~jk ~ 2 1 1~ k-j
if j *k

(k-j)

The following theorem sumarizes the known explicit relations involving

C(f,h) and S(k,h) , in the case when f € B(h)

ThEOR~1 2.1: Let f E B(h) . Then:

(a)

(2.5) f(z) = C(f,h)(z) for all z E (C

(b)

(2.6) J f(z)dz = h 
~ 

f (lc,h)
R

(c)

(2.7) J (f(x)~
2dx = Ii ~ ~f(kh)(

2
R k~-cG

and the set (h ’2S(k,h)}~ ,~0 is therefore a complete orthonormal sequence

in B(h) ;

(d) There exists a unique function g G L2 (-n/h,ir/h) , such that

1 /h -
.

(2.8) f(z) — e 1Z g(t)dt ;

(e) The function g in (d) is given by
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~
- h ~ f(kh)e~~~

(2.9) 
‘R 

e~~~f(t)dt  = 
- < ~

0 if x > i r / h  or if x < - ~~

(f) -

1 sin — (z-t)
(2.10) f( z) = 

~ JR 
f ( t )  h dt

~ 
(z-t)

(g)

(2.11) f’  E B(h)

(h)

(2.12) f~~~(kh) = h~~ 
~ 

f(jh)

wftere is defined in (2.4) ,  and therefore , by (2.12) ,

(2.13) f
(n)

(X) = h~~ ~ [ ~ f( jh) ] S(k ,h) ( x)
k= -co j~~o, 3

(i) Let g be defined as in (2.8). Then

(2.14) J f(t)dt 
~~ 

g(~) 
1-e~~~ d~

and in particular,

x 1 rr sin[(~~-k)~](2.15) J S(Ic,h)(t)dt h[ak + — J d~ ]

where (see Table 2.1)

(2.16) ak - 
~ 

j~ 
sin~k~ ~ .

?breover, if J f(t)dt - 0 , and if J f(t)dt is in B(h), then
R

____ 
_ _ _  

I
— ~~~~~~~~~ Z~~’
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(2.17) ) f(t)dt = h 
~ ~ ~~ 

.f( jh) ] S(k ,h ) ( x)
-

~~~ k=-oo j = -~ 3

(j) Let Pf and Hf be def ined by

(2.18) (Pf) (x) = u r n  f f( t) dt2~ri. ~R 
t-x-ly

(2.19) (Hf) (x) = 
P.V. 

JR 
f ( t  dt

Then

1 iir (x-kh)/h
(2.20) (Pf) (x) = ~~~~~~~~ ~~~~ ~

e 
ir(x-1th)Th~

and, since Pf E B(h)

k-j
(2.21) (Pf)(x) = ~ (~.f(kh) + 

~ f(jh)[~~~~~ 
_l

J } S(k,h) (x)
k -co

j*k

Similarly

(2.22) (Hf) (x) = i 
~~ 

f(kh) -f-- (x-kh) S2 (O , l ) b [~~(x-kh) ]
2

and since Hf € 3(h ) ,

(2.23) (Rf) (x) = Z ~~. I f(j h) [ (
j~~ ~ ]}S (k ,h ) ( x) ;

k--~ 3_~~
j*k

(k) Let a > 0 , and let ct - . Then

_  

_ I
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f(t)dt

~R [(x~t)2÷aZj~~ 12

(2.24) 
= ~~ J ’ e ~~~~~~~~~~~~~ dt

where g is defined in terms of f , by (2.8), where K denotes the

Bessel function,

(2.25) Ka(x) = ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and where

m Zin+a
(2.26) J (x) = ~ 

(-1) (x/2)
m 0  m! r (m+a+l)

In particular

(2.27) tk(a,cx,h;x) JR [(x-t) +a

— 2 (2ah )~~ J~ 
cos[(~- - k)tJtal( (aht)~itit I (a+1/2) 0 a

and

(2.28) r k (a ,ct,h ;th) —

where

2 ‘~‘ 
1.~~-a 

~
iI

(2.29) rk(a,cL,h) 1/2 J COS (kt)taK (aht ) dt
r(a+l/2) ‘0 a

Hence

—L —~~- — — - —
~~ -~ 

~~~~~~~~~~~~~~ 
.-

~~~~



(2.30) 
JR 

[(X : a2]
a lI2

~~~~~ 

f (lth ) rk (a ,a ,h; x)

and if this function is in B (h) , then

(2.31) J f(t)dt 
cz+l/2 = ~ 

{ 
~ 

f(jh)r~~. (a,a,h)} S(k,h)(x)R [(x t)2+a21 
k -cc, 3 - ~

In the cases when a+l/2 ~~
‘ 0 is an integer, the functions Tk(a ,a,h;x) can

be evaluated explicitly. In particular, if ct=l/2 , then (2.30) becomes

~ f 
f(t~dt

~ ‘~R [(x-t)~+y
2
]

(2.32)

= h ~ f(’~J~) { y(l~e~~~
h1)cos [it(x_kh)/h] + (x_kh) e Ymsin [it (x.kh)/h]}

(x-kh ) +y

(L)

~~ JR 
f(t)log[(x-t)2+y2J dt

(2.33)

= I f(kh){~Y-log it/h + [1-cos{ir (x-kh)/h}} log 1
(x-)~~ 

2~~2

(x-kh)

+ J~ 
1~(2_e~

Pt
~~)cos1 (x_kh)t/h} dt }

where y denotes Euler’s constant;
(in) Let 0 < cx < 1 , and let g be defined as in (2.8). Then

(2.34) Ix-t~~~f(t)dt — r(a)cos~tcx/z J~ h ~~~~~~~~~~~~ ,

_ _ _  
______________ I

—~--~~~~~~ -~~~~ — 

- 
- - 

— ____

~~~~~~~~~~~~~~~ I.- . —
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and in particular

(2.35 ) 
‘R 

t x-t I~~
1S(k ,h) (t)dt = har(a ) cos (~W2) J~ 

~~
aCO5 [(X kh)~~,h1 dt

so that

(2.36) - 

‘R 
= r(a)cos(iia/2) ha

I f(kh) J t aCOS[(X~kh)~,h] dt
‘0

These results follow from the results in (k) above;

(n) Let g be defined as in (2.8). Then

JR 
1og~x-tJ f(t)dt

(2.37)

= 
~ 

[g(O)-e g(t)] dt - ~ [y+log(71/h)] g(0)

and in particular

JR 
1ogJx-t~ S(k,h)(t)dt

(2.38) 
“-~~h { y+log(ir/h) - J 1-cos[(x~kh)t/M dt }

so that

J log~x- t J  £(t)dt

(2.39) — - ~ L Och) { y+log(n/h) - J~ 
].-cos[(x-kh) t/h ] dt }

This result is obtained from (2. 33) , by letting y • 0 there.

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ...-. 

— -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __
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TABLE 2.1

Integrals of the Sinc Function from 0 to n : = f ~
— - ~o 

il’X

n i n t e g r a l  n i n t e g ra l

1 0 . 5 3 9 4 8 9 8 7 2 2 3 6 0 8 3 6 3 6 d + 0 O  51 0 .50 19~ 6 S 3 5 1 6 5 7 7 9 5 1 4 d + C O
2 Q. 4 5 1 4 l 1 6 6 6 ? 9 t J 1 4 0 3 1 4~~+0 Q 5 2 O. 4 9 8 O 5 1 6 6 1 6 5 6 333 7 9S~~+C0
3 0 . 5 3 3 0 9 3 2 3 7 6 182 7 1 9 84 ~~+00 53  0.501911582593445087d+0O
4 fl.474969669383655078d+0O 54 0. 4 9 8 1 2 3 8 1 2 1 2 1 5 7 2 9 2 8 d + D 0
5 0.52010?164191303518d+0O 55 0.50184207998O753156~~+~ i)
6 (J. 48320521749774?133a+00 56 O.498190810017933564d+00
7 0 .51441599712330 5252r’l.00 57 0.501777453793325-155~~

+C (
~8 0.437374225057819973d+C0 58 0.498253188234336532d+0C

9 0.511230152636997458~~+00 59 0.501717203 2o111 57~~9d+0~
10 0.4898881?1153878660d+O0 - 60 0.498311408629275600~~+C0
11 0.509195742Q08216617~1+00 6 1 0.501660912583309055,d4CO
12 0.491568351668600880d+00 62 0.49836587348341O4S4.~+CC
13 0.507734657812566074 d +00 63 0.501608190663941573~~+C014 0 . 4 9 27~~0 2 0 9 3 7 4 8 0 3 13 5 ~~+ 0J  64 O.4~~8416934805585154 .~+00
15 0.5067486944?2011579d+O0 65 0.S 01553712 6935115 42-~+C0
16 O.4936724151?-3223958d+00 66 0.493464901947476~~1O~~40C
17 0.505955907917176832~~+00 67 0.501512183224493392d+0O
13 0.494374552333662521i~~03 63 0.49351O047874920331~~+0O
19 ~ .53532 971044015~~862~~+00 69 0.501468360466326563~~+0O
2C O.4949364 570695472~~+O0 70 0.498552614364505956d+GC
21 ~.504~~22 607304171877d+03 71 0 .5014270015722503o5~~+:2
22 J.495396415C84857158d+G0 72 

- 

0.493592816334313617~ +0O
23 0.504403585198050434~~+00 73 0.50138790865269Q940d~ 0C
24 J.495?79766136643166d+00 74 0.498630845472535081d+00
25  0.504051535843944646d+00 75 0.501350900457334930d4’GO
26. 0.496104197468515347d+0O 76 0.498666873293589259d+0O
27 0 .503751595031909162~~+00 77 0.501315814563370501~~+00

~~ 0.496382320165352064d+00 73 - 0.498701053723476824d+00
29 0.503492993277940418d+C0 79 0.501282504~ 92800478d.a0
30 0.496623386631180065d+03 80 0.498733525?983492Jod+00
31 0.5032677369477718221+00 81 0.501250840183041950c~+00
32 0.496834333855222759d+00 82 0.498764413040732243~i.’Y)
33 0.50306976320218746?i+00 33 0.501221701250237743d+00
34 0. 4 9 7 0 2 0 4 8 7 0 2 7 6 6 7 f 3 4 3 d + 0 0  34 0. 49379383CO68040258d+00
35 0.502894412555701326~~+00 85 0.501191980497952594d+OC
36 0.497185962335964750d+00 86 0.4988218?8976649611d+00
37 0.502738005382438294d+00 87 0.501164580131481855d400
38 O.497334026926906631d-’.OO 88 0.498848653037272067~D00
39 O .502597633215927650d+00 89 0.501138411145478520~1+00
40 0.49?467290977560678d+00 90 0.498874237230974993d+00
41 0.5024?0950690821481d+00 91 0 . 5 0 1 1 13 3 9 2 3 5 3 2 3 9 8 7 6 d + 0 0
42 0.49?587867804393108d+00 92 0.498898709150092725d+00
43 0.502356048524901335d+00 93 0.501089449570580461d.00
44 0.497697486705937335d+00 94 0.498922139784147706d+00
45 0.502~ 51356677318093d+00 95 0.5O106651483093481?~~+0046 - 0 .4977 975 7639102 2 35 7d+ 00  96 0. 4 9 8 9 4 4 5 9 4 2 0 7 5 4 7 6 3 5 d + 0 0
47 0.502155572214122969d+00 97 0.501044525791360742d+0O
48 0.497889327564668397d.00 98 0.498966132183088041d+00

- 49 - r3.502067604827451950d400 99 0.501023425161590715d+00
50 0.49?973740503081827d+0O 100 0.498986808693045503d.00

_  

- 

_ _
_ _  _ _ _ _ _ _



3. APPROXIMATIONS OVER ~1}EE REAL LINE.

Whereas the relationships of the previous section are exact, each of

the formulas (2.4) , (2.6) , and (2.9) provides a method of approximation

for the case when f does not belong to the class B(h) . We thus intro-

duce another class of functions defined on R - (-ayx’) , for which the

approximations referred to above are extremely accurate. At the outset

we investigate the error of the approximations for the case when the complete

set of points (kh}~~~ are used in the approximations.* We then also

investigate the error of approximation when only the finite set of points

is used, and h is chosen judiciously.

DEFINITION 3.1.: Let d > 0 , and let Dd denote the domain

(3.1) Dd {z E C: I~m z i < d}

Let p ~~ 1 , and let Bp(Dd) denote the family of all functions £ that

are analytic in Dd , such that -

(3.2) j f ( x + iy ) I d y + 0  as x~~~±~~ ;
-d 

-

and such that N~ (f ,Dd) < 
~ , where

1/p
N~ (f ,Dd) — ( J I f(x+ iy) P~~)

- .y4d  - R

(3. 3) I. i/p
+ ( J  ~f(x~iy)~ Pdx)

*p~ exception occurs, of course , for the case of Eq. (2.10).

- —~~~— —  —~~~ — —_ — — _ __ __‘ _ _ _

~~~~~ 

-——— -————— — — — — - —-—— --— - - - 
— i - - — • -~ 

—
-j  . - — ______________ -
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If p—i , we shall simply write B(Vd) and N(f ,Vd
) instead of Bi (Vd)

and Nl(f ,Vd) respectively.

Let us set

- I Tsln[K (x-kh)]S(k,h)(x) = __________

~~
. (x-kh)

C(f ,h) = ~ L(kh)S(k,h)

(3.4) N
CN (f ,h) = ~ f(kh)S(k,h)

k=-N

E(f ,h) = £ - C(f ,h)

EN (f ,h) = f - C
~~~~

(f ,h)

The most effective api lication of the formulas of this section occur for

the case when £ E B(d) , and when

(3. 5) J f(x) ~ < ~~-a J xI

for all x E R , where C and a are positive constants. 

-

- ~~~~ --

~~

-

~~~~~~~H

FIGURE 3.1 The Region Vd of Eg. (3.1) .

_______ ________________ 

______ _________________

— .-• 
‘- ‘.+~~.
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3.1 Error of Approximation by C(f ,h)

The error of approximation of a function f in Bp (Vd) by C(f ,h) may

be expressed explicitly as an integral [27] .

ThEORH’1 3.1: Let f E B(Vd) . Then for all x E R

E ( f ,h) (x)  = ~~~~~~~ J { f(t-id)

2ni R (t_x_ id)sin[1j. (t-id)]

(3.6)

- 
f(t+id) dt

(t-x+id)sin[~ (t+id)] 
J

This result forms the starting point for obtaining the error of many different

types of approximations. In particular the following theorem was proved in

[46J .

ThEORE4 3.2: (a) If f € B(V
d) , then*

1/2 N(f,Vd)(3.7) 2ird IE(f,h)ç , 2(ird) IE(f,h)12 ~ sinh(,rd/h)

(b) If f E B2 (Vd) , then

l’2 N2(f ,Vd)(3.8) IE(f,h)~ , 2(itd) ‘ IE(f)I ~~~ -w
(c) If f G B p CVd) ‘ 1~~~ p < c o j .+~~~~.l

WActuajly, the bound on I E(f ,h)l~~~~ is new. It is obtained via a direct
application of the inequality ~ 2 2 1g11 , where cb (x) - f(x- t)g (t)dt
and where f G L2 (~ ),  g E L1(R) , to (3.6).

-_

_ _ _ _ _ _ _ _ _

— 
I
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then -.

1 r(~~1)r (l) 1/q N (f ,V )
(3.9) ~E(f ,h)ç~~ 

~ 
2 2 _p

rr (2d) ~ r(~-) sinh (~E_)

We remark that once we have bounds on I E (f ,h) 2 and U E (f ,h) U , we

can get the bound on I E (f ,h) l 5 , for any a between 2 and , via the

inequality

(3.10) UE(f,h)15 < I E (f ,h) U ~~
’
~ ~E(f ,h) U ~~ 2”~

COROLLARY 3.3 [49]: - Let the condition (a) , (b) or (c) of Theorem 3.2 be

satisfied and let f satisfy (3.5). Then by choosing h = [ird/ (aN)]”2

(3.11) IEN(f,h)U s ~ C1N
1/2e~~~~

N
~~

where C1 depends only on f , d and a , and for appropriate* s , as in

Theorem 3.2.

* If bounds on both U E(f ,h)12 and IE(f ,h)I~ are given in Theorem 3.2 ,

then (3.11) holds for all s E [2 ,o~] .

- -~ - 
-..- • 

.

-

~~~~~~~~~~~~~~~ 
- -- -

~~~~~~

- ‘

~~~~

- - -

~~ ~~~~~~~~~ ~~~-
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3.2 Error of Quadrature by the Trapezoidal Rule.

Let f E B(V d) , and let us set

J R 
EN (f ,h)(x)±c

(3.12)
N

- j f(x)dx - h ~~ f(kh )
R k--N

and

(3.13) ri (f ,h) = u r n  nN (f ,h)

The error n ( f ,h) may be obtained by integrating (3.6) us ing residues . This

yields [22 ,26 ,27 ,45] the following theorem.

THEOR~ 4 3.4: Let f E B(V
d) , arid let ~(f ,h) be defined in (3.14) .

(a) Then 
-

(3.14) n (f ,h)- .~.- f { f(t+~~~)e it)ir i’h 
- 

f( t~i d ) e d t ) ~~~ } dt1 R sin [~ (t+id) ] sin[~. (t-id) }

Moreover ,

1 -ird/h
(3.15) r i(f ,h ) I  < e N(f ,Vd)

sinh(ii-d/h)

If in addition f satisfies (3.5) , then by taking Ii — [2itd/ (aN) ]1’~
’2

r~(3.16) N (f ,h ) l  ~ C1e~~
where C1 depends only on f , d and cx

- 
- 

— —
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3.3 Fourier Transforms.

In this section we shall give a bound on the error of the approximation used

in the Fast Fourier Transform method [49].

Let E(f,h) and EN(f,h) be defined as in (3.4), let x € JR , and let

us set

= 
JR ~~~ 

EN(f ,h)(t)dt

(3.17) - h~~ f(jh)e’~~ , x~ <~~

- 

f f ( t ) e~~~dt , lx i > 
~~

- 

-

JR

and

(3.18) - ~(f ,h) 11111 
~~~~~~

Eq. (3.17) tells us that the s~n h ~ f(jh)e’~~ is not to be used to
j - -N

approximate J e ’~~f(t)dt if lx i > ir/h - 3y replacing f(t)  by f(t)e~~t

in (3.15), we get

THEOREM 3.5: Let f E B(Vd) , let x € JR , lx i  < it/h , and let 6(f,h) be

defined as in (3.19). Then

- - (d-iu)(~*x)
6(f,h)(x) - f { f(u+id )e

1 R sin (~ (u+id) ] -;
(3.19) 

- - (d+iU) (~~-x)
_ f(u-id )e 

.

sin(~(u-id) ] )

~~ ~~~~~ 
- - -

F - 
• - -
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and so

1 N(f ,Vd) -d(~ - l x i )
- (3.20) i iS ( f ,h)( x) l  ~ e

COROLLARY 3.6 [49]: Let the conditions of Theorem 3.5 be satisfied, let

f satisfy (3.5) on JR , and let h (ird/aN)1’~
2 
. Then

(3. 21) I~N( f j~) (x) l ~ C1e 
iT lx i < it/h

where C1 is a constant depending only on f , d and a

1~~

I ______________________________________ 
______________ ____________________ ___________________________________

—
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3.4 Approximation of Derivatives.

In applications it is often desirable to approximate both a function

as well as some of its derivatives. These derivative approximations are

readily obtainable by differentiating CN (f ,h) . Bounds on the error of

approximation of f(n) on JR by CN (f ,h) (n) are readily obtained by

bounding the integral [25]

E(f ,h) (n) (x)

— ~~~~ ~ 
f fl S~fl (n-J )(~~)(IT/h)n-J f(t-id)

(3.22) 
— 2iri 

~R 
1 j0 (n-j)!(t-x-id)~~

1 sin[~-(t-id)i

- 

~ 
sin~~~ 3) (!~~) (1r/h) h 1 3  

( f(t+id ) } dt
rO (n-j) l (t-x+id) sln[E(t+ld)]

which follows from Eq. (3.6). The details of bounding E(f,h)~~ and

EN (f ,h)
~~~ 

are carried out in [25 1 . We state some of these results .

THEOREM 3.7: Let n ~ 0 be an integer. (a) Let f G B(V~) , and let

i~~d / h > l .  Then*

( , 1/2 N(f,Vd) ‘h n(3.23) IE(f,h)~’~ I ., < 
n. ___________ (-ifl )
2(ird)L1 

- 
h4 1/4 sinh(ird/h)

i r d

and

~ 
.~ n! e N(f ,Vd) (u /h)1’

(3.24) UE(f,h)’~~U~ < ;
2ird sinh (nd/h)

*~~e the footnote on page 16 re. the IE(f,h)0~ I2 
- bound which is

T _ 
_ _ _  _ _  

_ _  _ _ _ _

- - ~~~ ~~~~~~ ---- - - - —- 
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(b) Let f E B2 (Vd) , and let urd/h > 1 . Then

(3. 25) ~E(f ,h) (n)
~ 2 < 

n! e Nz (f ,Vd) 
_ _ _ _ _ _ _

IT sinh(ird/h)

arid

(3.26) ~E(f ,h)~~~ç 
n! e~~

2 N
2 (f ,Vd) 

1/4 
(it/h)~— 

2(itd)1”2(1 - 
~~ 2~ 

sinh (rrd/h)
a d

COROLLARY 3.8 [~5 ] :  Let f satisfy the condition (a) or (b) of Theorem 3.7 ,

and let f satisfy (3.5) . Then by choosing h = [ITd/(aN)]~
’2

I E N (f ,h) (h1) Il s =
(3.27)

< C1 N~~~ e (irdaN)

for any s in [2 ,oo] , where C1 depends only on f , d , a and n - In

particular , with defined as in (2.4),
n+l

(3.28) l f (n) (kh)~h 11 
~ f( ~~~h ) 5 c ~~~

) 

I < C1N~~~ ~~~~~~~j —- N

COROLLARY 3.9*: Let the condition of Corollary 3.8 be satisfied , and on R

let

(3.29) lf(h1)(x)I ~ C2e~~l x l

Then there exists a constant C3 depending only on f , d , a and n , such

that

~
I I

*This result is believed to be new.

I ’

~~~~~~~~ ~~~~~~~~~~~~~~~~ 
- ————~~~~~~~ - - . -
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n+ 3
(3.30) l f ~’~~(x) - h 

~ 
( ~ f ( J h ) d c~ )S(k ,h)( ~) ,  ~ C3N e ~~~~~~ 

2

k=-N j = -N

The approximations (3.28) and (3.30) are useful in the solution of

differential equations.

:~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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3.5 The Indefinite Integral.

Let us present an approximation of

rX
(3.31) 1(x) = J f(t)dt

-~~~

in terms of the values f(kh) of f [21].

ThEOREM 3.10: Let f E B(V d) , and let g € B(Vd) where

Bx
(3.32) g(x) = 1(x) - 

e 
-

~~~~~e ~e

and where - 
-

(3.33) 0 < B < ~~~ .

On ]R , let

(3.34) if (x) I < C  e~~
’
~~~

and let

(3.35) cx — min (ct ’ ,28)

Then for h - [ rrd/(aN)] 1~
2

8x ~
I f(t)dt - 

e 
..

~~~~~~ 

f(t)dt
e~~+e~ -‘JR

(3.36) N ~
. N r

- h Z j Z ak .  [f(jh)- 
28 

~ 
I f(t)dt] S(k,h) (x)

• k—-N j~-N 
3 

(e8~1+ei3hl) 
-JR 

_ _ _ _ _
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where 
~
7k is def ined in (2 .1~~, and where C1 is a constant depending only on

f , d and a.

In applications it usually suffices to take ~ = 1/2 or 1 , changing d

instead.

— -
- - .‘.- -~~ - -- ~~~~~~~~~~~ ~~~

- - 
____ .~
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3.6 The Hu bert and Related Transforms.

Given f E Bp (Vd) , p ~~ ‘ 1 , each of the integrals : the projection integral

(3.37) (Pf) (x) lim ~ f f ( t )  dt
y-*0

4 2id JR f-x- iy

and the Hu bert transform integral

(3.38) (Uf) (x) = 

~ ‘~ ~ dt

clearly exist. These integrals are important in applications dealing with Fourier

transforms such as in the solution of integral equations of convolution type. We

shall give approximations of these integrals in terms of finite stuns of (2. 20) ,

(2 .21) , and (2.22) and (2.23) and we shall give bounds on the error of these

approximations . - 

-

THEOREM 3.11 [46,49]: Let £ € Bp
(Vd) 1 ~ p < o o  , and let E(f ,h) be defined

as in (3.6) . Then

P[E(f ,h) ] (x) = - 4LJ ~~~~~~~~~~~~~~~~~~~~~~
~~~ JR (x-t-i.d) sin [ ~ (t-id) ]

(3.39)

- 
[e~ +e~~(t+~d) /h] f(t+id ) 

~ dt
(x-t+id) sin [ ~ (t+id)] ~

and

I1[E(f ,h)] (x) — - ~L. f { ~~~~~~~~~~~~~~~~~~~~~~~it JR (t-x-id) sin [ir(t-id)/h]
(3.40) 

+ ~~~~~~~~~~~~~~~~~~~~~~~ } dt
(t-x+id) sin (,r(t+id)/h]

— - -&- —.— -S — - —---. - 
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~vbreover, if p—l , then

1+ -~~~ e~~~’
1
~ N(f ,Vd)(3.41) IP [E(f ,h) ]I  <

2-rid sinh(-rrd/h)

1 + e iid/h N(f ,Vd)(3.42) U ! [ E (f ,h) 1
00 

<
2urd sinh (urd/h)

while if p=2 , then

1 + -
~~~ e --rid/h N(f ,Vd)(3.43) IIP[E(f,h) ] II < l’22 (itd) / sinh (-rid/h)

--nd/h N (f ,V )
(3.44) IIH[E(f,h) ] I  < 1+ e d

2 (iid) / sinh(-Trd/h)

Furthermore , if II E (f ,h) U 2 is bounded , then

(3.45) II P [E(f ,h)]1 2 = ll f([E(f,h)] 1
2 = IE ( f ,h)-1 2

In addition, if p is either 1 or 2 ,if f satisfies (3.5) on JR , and if

h = [itd/ (aN) ]~
”2 

, then there exists a constant C1 depending only on f , d

and a , such that -

(3.46) (P~~(x) 
-

- 
1 

~ f(th) e1~~~~~~-l < C 1N
112e~~~~~1 k—-N ir(x-kh)/h ‘ s

N 1/2
(3.47) I (Kf)(x) - ____ < C1N

V2e~~~~~

for all s E [2 ,~ ] .

~~~~~~~ ~~~~~
- -~ ,— - - -  

- 
— - 

S. - - 
I ——
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We remark that if £ satisfies (3.5) , then so do Pf and ~-ff . Conse-
t.t , quently, we have (see (2.21) and (2.23)).

THEOREM 3.12: If f E  Bp (Vd) , p=l or 2 , if f satisfies (3.5) , and if

h = [itd/(aN)]~~
’2 

, then there is a constant C1 , depending only on f, d and

a , such that*

N ~- N k -j
1Ff - 

~~
- f(kh) + ~ f(jh) ~ i) -l S(k ,h)1 5k= -N j = -N k-j

(3.48) j*k

< C1 N
3/2e~~

&
~~

and

N (N 1 (1 % k-j .
~

H I-If - .
~~

- ~ ~ f(jh) — -s ‘ 
~ S(k ,h) 1 5~ k—-N ‘-j =-N k-j

j*k
(3.49)

< C1 N312e~~~~~~ 
- 

-

for all s € [2 ,00]

* •These results are believed to be new.

_ __________________________ ______ 
I
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3.7 Singularities on the Interval of Approximation.

In this sectiQn we consider the extension of the results (k) , ( 9 ) ,  (m)

and (n) of Theorem 2.1 to approximation in B (Vd) . These results are particu-

larly useful in the solution of singular integral equations in more than one

dimension. These results are belived to be new.

THEOREM 3.13: Let f E  B(Vd) , and let r k (a ,8,h;x)  be defined as in (2.27).
1Then for 1 < p  < 00 , i/p + 1/q = 1 , and p(64) >

00i~f f ( t )  dt I

I ~~~~~ [(x ~t) 2+a2] 

- 

kL 
f(kh)-r k (a ,6, h; x) I

1
(3.50) i. i/ p r (~j2.) l/q 

N(f ,Vd)2( 8+1/2) l/q I r(P( s+2) - 1/2) 
______

<
I r (P( 6+ 1/2)) r(~) I sinh(itd/h)

~breover, if f satisfies (3.5) and if rk(a,B,h) is defined as in (2.28) and

(2.29) then there exists a constant C1 
depending only on f , d , a and a such

that if h = [-rid/CaN)]1”2 -

N NJ f(t ) dt 
- 

~ f(ihh k~~
(a ,8,h)} S(k ,h) (x)

JR 2 2 8+1/2 k— -N t j —- N[ (x-t) +a
(3.51)

< C N312e~~~~~~ 
— 

-— 1

In particular , if a-0 and - -~~ - < 6 <0 , then for f as in (3.50)

00

L
f(t ) Ix ~t I 2 8 l dt - h 28 r ( 28)cO$ (uT 8) 

~ f(kh) I t 28cos [ (x-kh) t/h]dt
k--co ~O

(3.52)
r ( -B )r( ~*B) N (f ,Vd)

~ 
1/22iTd2+28 sinh(-rrd/h)

—----~~ 
—-—-- -—- -- - — - —

Id - _
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and if f satisfies (3.5), then for h = [itd/ (aN)]’If’2

if f( t ) j . - t J 284 dt h 28r ( -2 8)cos (it8) { f(jh) J t 28cos [ (k~j ) t ]dt}.
JR _ k--N j=-N 0 

-

(3.53) - 1/2
S(k ,h) i ~ C1 N312e~~’~~~~

where C1 depends only on f, 8, cx and d

Equations (2.32) and (2.33) yield solutions to Laplace ’s equation in the

upper half plane. Let u satisfy

(3.54) u~~ + u~,>, = 0 , x E R  , y >  0

and either

(3.55) u r n  u(x,y) = f(x)
y-~0~

or

(3.56) him au(x,y) = f(x)
y-’~0~ 

3y

1’HEOREM 3.14: Let u be the solution of the Dirichiet problem (3.54), (3.55),

where f satisfies the condition of Theorem 3.2. Then -

~u(.,y) - ii 

~ f(kh) {Y(l_e )cos[ir(’ kh)/h];( kh)e~ ’7~~sin[it( .-kh) /h
} a~ k--øo (--kh) +y p

(3.57)

~ I E(f ,h)I

where IE(f~h)I~ is defined and bounded as in Theorem 3.2. ?4~reover , if f also

satisfies Corollary (3.3), then by choosing h and s as in Corollary 3.3,

S V —- . — -- - _ - - - - -- -  ~~~~~~~~ -
- . - - -  

- - - - _ _ _

- - ‘— -- --
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Iu (’,y)-

~ 

~~ 
{ ~ f(Jh)Y(1-e~~~~~(-~)~~ } S(k,h)15k--N j=-N (k-j) h +y

(3.58)

< C1 N312e~~~~’~~ 
-

where C1 depends only on f , d and a

THEOREM 3.15: Let f E B(V
d) , and let

(3.59) M(a, f, Vd) = 
JJR

if ( t÷ id  )~ + l f ( t - id )~~1log [ (t -a) 2+d2 ]dt < 0 0

for all finite a E JR . Then the function u=u(x,y)

(3.60) u(x,y) = ~~ 
J
iog[(x~t)2+y2]f(t)dt

which solves the Neumann problem (3.54), (3.56) satisfies

lu( . ,y) -~L 
kJ.co 

f(kh) {_ r_ log r/h+[1~cos {T( .~kh)/h }]log [ 1
~~~~~] :

- -

+ f
it l-(2- e

~~~
m)cos [( .-

~~)t/h ]
}d~H -

(3.61) 0 t 00

M(a, f , V )e~~d/’h+4 (h/d)N(f ,V )d d
8-nsinh (-n d/h )

1treover , if f satisfies (3.5), and if

(3.62) 
JR 

f(t)dt — 0 ,

then for h - [itd/ (aN) 1/2 1

M’~ ~~~~ 
-

- 

- .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~ { 2 f(jh)[u_ (~l)
k 3 ]log[ 3)~~~~~ ~k--N j=-N (k-j)

- 
j*k -

(3.63) + f~ 
i~(2~e 

/h)cos[(k j)t] } S(k ,h) 1
00

< C1 N
3
~
2e~~~~~

where C1 depends only on f , d and a - In particular , if y= 0 , (3.63) re-

duces to

ii f logl.-tlf (t)dt-~~ 2 { 2 f(ih)
J 

l-cos [ (k- j ) t ]  dt
JR k—-N j=-N 0 t

j*k
(3.64)

< C 1N3/2e~~~~~ ) / :-

- 
~~~~~~~~~~~~~~~~ 

- - - —-—-I— 
•
;~~~- ; ~ :~~~~~~ - - ~~~~~~~~~~ 
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4. FORMJLAS- OVEP FINITE, SEMI-INFINITE INTERVALS AND CONTOURS.

In this section we shall consider the extension of some of the formulas

of the previous section to finite and semi infinite intervals , and more generally ,

to contours [45 ,49].

The success of the methods of the previous section for functions in Vd

suggests that a problem over an arbitrary interval be transformed into one over

(-~~~~ ,~~~~) in such a way that the conditions of the theorems of the previous section

are satisfied. In this way, some formulas over contours other than (~co ,co) may

be obtained directly . However , not all formulas transform directly, and we must

make certain simple “adjustments” in order to make direct transformation possible .

The following definition is fundamental for the remainder of the paper.

DEFINITION 4.1: Let V be a simple connected domain , with boundary 3V , let

a and b*a be points of ~V and let 
~d be defined as in (3.1) . Let ct be

a conformal map of V onto 
~d 

such that •(a) = -00 , ~(b) = . Let

= 
- 

~ denote the inverse map, and set

(4.1) r — {rp (x) : -co x < }

Given ~ and ~ , we denote by zk - zk (h) the points

(4.2) — rp(kh) , k—0 ,±l,±2,...

Let B(P) denote the family of all functions F that are analytic in ‘V , such

that

(4.3) J IF(z)dx l -
~ 0 as u ... ~~~~

q,(u+L)

_ _ _ _  ~~~~~~~-~~~~~ -— - - -  ~~~~~~~~~ - - _ _ _
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where

(4.4) L = fly : y is real f r i  < d}

and such that

(4.5) N(F,V) u r n  inf J IF(z)dzl < 00

C1-~ V C1CV C1

We remark that if F E B(V) , then f defined by

(4.6) f [Foi ji]~ ’

is in B(Vd) as defined in Definition 3.1 .

Let us next give four comnonly used transformations 4 and the corresponding

inverse functions 4, , corresponding intervals I’ = [0,1J,[-1 ,1] and [0 ,co]

EXAMPLE 4.1: r = [0 ,1] . In this case

(4.7) V = {z : ~arg —.
~---f < d}

l-z

3
FIGURE 4.1 The Region V of Ex. 4.1.

The boundary of V consists of two circular arcs which intersect with angle 2d

at 0 and at 1.

- --__-—--- — - _—-S - _______ _______________
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The function 4, , the inverse function ~i and the points Zk are given by

w = 4 , (z) = log~~~~~ z = 4, (w) = ~~~~ tanh~
(4.8)

zk = ~~- + - ~ - tanh(kh/2) , k=0,±1,±2 ,...

EXAMPLE 4.2: 1’ = [-1,11 - In this case

(4.9) V = {z : I arg (j~—~-~) i  < d}

The functions 4, and 4, and the points zk are given by

w = 4,(z) = log(~-~-~)’~ z = 4,(w) = tarih~
(4.10)

zk 
= tanh(kh/2) , k=0 ,±l ,±2 , . . .

/

, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE 4.2 The Region V of Ex. 4.2.

We shall give two examples for the case r = [0 ,co] . The first of these is

useful in the case when the function f to be approximated is analytic in a

sector, jarg z~ < d  , while the second is useful if f is analytic only in a

strip of width 2d syninetric about the real axis (more precisely, in the region

V of Ex. 4--see Figure 4.4).

- - 

—-

~~

----



-36-

EXAMPLE 4.3: r = [0 ,co] . In this case V is the sector

(4.11) V = {z : f arg z i < d }

~ ~~~~~~ ~~~~~~ - r I— H - ~ 7..
f~ - 

~~~~~~~~~~~~~~~~~~ -p . -

FIGURE 4.3 The Region V of Ex. 4.3.

The functions 4,,4, and the points zk are given by

w = 4,(z) = log z z = ~~w) = eW

(4.12)

zk = e~~ , k=0,±1,±2,...

EXAMPLE 4.4  (22J : F = [0 ,co] . In this case

(4.13) - V = {z : Jarg sinh(z) I < d }  , 0 < d ~ n/ 2 

d
l - —- 

~~~~~~~~~ 
—

~
- -

~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~

- 

-
, 

L .~ ~~~~~~~~~

FIGURE 4.4 The Region V of Ex. 4.4.

- a-- - — —-_-— — -_---- - _----- --
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The functions 4,,4, and the points z.k are given by

w = 4 ,(z) = log[sinh z] z = 4, (w) = log[eW+/ 1+e~~

(4.14) Zk = 1og[e~~+ v’ l+e2
~~ } , k=0 ,±l ,±2 , ..

kh l 3kh 3 Skh S 7kh kh- e  -~~- e  +~~~- e  - U ~~e ÷ . .., e < .1

The expansion in (4.14) is preferred if e~~ < .1 since the formula

zk = log[e~~+/ l+e 2
~~],  while mathematically exact , is computationally inaccurate

for small e~~ . In applications , -the accurate computation of f (z k) , where

f(z k) is to be approximated, is important , especially near a singularity of

f (see Sec. 8.2) .

We shall next review the known results corresponding to those in Sec. 3

which may be extended to approximation over a contour I’ as described in Def. 4.1 ,

albeit some minor modifications. These modifications are described in the

-‘1~eorems,as we shall present them.

The condition (3.5) takes on a simple general form: let g be defined on

r , and let -

(4 .15)  
- g(x) i <~~~~c x I~~(x) I

for all x E r , where C and cx are positive constants . - 
-

Two identities play an important role in obtaining all of our bounds . These

are described in the following theorem.

ThEOREM 4.2 [49]: Let F E B(V) . Then the identity

_______ -_ -~~-—-~~~~ --~- - - - -- - ,.-~~~ -- - - _- - - - - - -_-- - - --~~-
- ... - -

- _.d
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Ft ~ 00 F(z~.)
- 

~~ S(k ,h) o4 ,(x)
4,’( x)  k=-co

(4.16)

= sin[-n4,(x)/hJ I F(z)dz
2id ~3V f4,(z)-4,(x)]sin[-ir4,(z)/h]

is valid for all x E I’ . Moreover

00 F(z k)
F(x)dx-h ~r k 00

(4.17)

1. r exp [~~~~~ Im4 ,(z) ]
F(z)dz

~~V sin[ir4,(z)/h]

We remark that (4.17) is obtained from (4.16) by multiPly ing (4. 16) by

4,’ (x) and integrating over I’ -

0

_ _  _ _  _ _ _ _ _ _ _ _ _  __ _  I- — ______ - —— — _________
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4.1 Interpolation over F

‘fl-IEORE4 4.3 [45 ,49 ] : Let 4 , ’F E B(V) . Then

(4.18) F(x)- ~ F(z~)S(k ,h)o~(x)I < 
N(~ ’F ,V)

k--co 2-ird sinh (ird/h)

for all x E ~ - Moreover, if F is bounded on F by the right-hand side of

(4.15), then by taking h = [-ird/(aN)]1”2

(4.19) IF(x) - 2 F(zk)S(k ,h)o
~
(x)I <C 1N

V2e~~~~~
)

k= -N

for all x E F , where C1 depends only on F , d and a

It may happen that F E B(V) , but ~‘F ~ B(V) . If the limits

lim F(x) = F(a)
x-’a

(4. 20)

u r n  F(x) = F(b)
x-’-b -

exists and are bounded , where the limits are taken along F , then it may also

be the case that 4 , ’G E B(V) , where

-½4 ½c~(4.21) G — F - 
~~~~~

— F(a) - 
~~~~

- F(b)
e”~ +e “ e”~ + e

This device is often useful in applications.

Let us next illustrate the fornula (4.19) and (4.21) for the case of the

transformations in Examples 4.1 to 4.4.

H

—S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —— .— ——~~ 
—— - — — - - _ — _ — -_ - - — - -——-— - -- - - . - — - - —_ - - -_——-—-

- -~~~- - 
- - — ~~~~~
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EXAMPLE 4. 5: For the case when F = [0 ,1] , let F be analytic and bounded

in the domain V of (4.7) . On [0 ,1] , the condition (4.15) becomes

(4.22) IF(x)I < C Xa (l~X) a 
-

If F satisfies (4.22) on [0 ,1] , then by taking h = [7rd/ (aN)}1~
’2 

, (4.19)

becomes

h ( rr x ~ N (-1) F( zk)
F(x) - — sin-~r~- log I—5~~ ~IT 

-‘ k=-N log 
~~~~ 

-ith
(4.23)

- 
< C1NV2e~~~~~~

where Zk is given by (4.8) , and where C1 depends on F , d and cx - If F

does not vanish on 0 or at 1 , the function G of (4.21) may , provided that

the limits (4.20) exist. The function G takes the form

(4.24) G(x) = F(x)-(1-x)F(0)-xF(l)

We remark that if F E B~V) and if F E Lip (V), where ~ denotes the closure of

V , then 4, ’G E B(V) and G satisfies (4.22) on [0 ,1] [ 36] . The formula

(4.23) does a good job of interpolating functions such as

F(x) = x1”3(l-xY1”2log x , or F(x) = sin (-n-x) log(l-x) , etc. on [0 ,1] -

The case of I’ = [-1 ,1] is similar to that of I’ = [0 ,1]

EXAMPLE 4.6: Consider the case of V as in Ex. 4.3 , with I’ [0 ,co] - Let

F be analytic in the sector (4 .11) . On [0 ,co] , let F satisfy

(4.25) JF(x)I < { Cx~ if 0 ~ x ~ 1

~~~ ~ l < x < c o
— 

~~~~~-- - - -  
- 

_~~~-~~ - - -~~~~~~~~~~~~~~~~~~ - -.
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a condition which is equivalent to (4.15). Then by taking h =

(4.19) becomes

N k kh
IF(x) -~ sin{~ log x} ~ (-1) F( e )

(4.26) 
if k=-N log x-kh 

-

< C1N112e~~~~~~

where C1 depends only on F, d and a - If F does not vanish at 0 or at

and if the limits (4.20) exist, then we may be able to effectively apply (4.26)

to G (see Eq. (4.21)) where

(4.27) G(x) = F(x)-~4~
. F(0)-1~~ F(co) -

The formula (4.26) does an accurate job of interpolating functions F such as

F(x) = x2”3 (log x)/ ( l+x) , or for F(x) = x5”2e~~sin x/2 , etc.

EXAMPLE 4.7: Let us again take F = [0,co] , for the case of Ex. 4.4. For this

case the condition (4. 15) becomes

if
(4.28) IF(x) I ~~~ 

-{ _
~~~~~‘-C e if l < x < o o  ,

If 4 , ’F E B(V) and if F satisfies (4.28) on [0,co] , then by taking

h = [-n-d/(c*N)]1~
’2 

, we get

h N (1) kp()~~
F(x) -— sin {~~ log[sinh x]} ~IT 

k--N log(sinh x]-kh
(4.29)

< C N1’2 e d~~

for all x E (0 ,~~1 , where is defined in (4 14) and wMre C
1 

depends only
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on F, d and a . If F is analytic in V but if F does not vanish at 0

or at , then the function G may satisfy the conditions of Theorem 4.3

well as (4.28), where

(4.30) G(x) = F(x) - - F(0) - sinh X F(co)
1÷sinh x 1+sinh x -

The formula (4.29) does well at interpolating functions over [0,co] which may

be oscillatory on (0,co) , but which may have a singularity at x=0 - For

example, (4.29) does well at interpolating F(x) = xC~log[l~(
Sl
~ 
x)2] ~~~ , or

F(x) = x4”5e ’~ -

- -if

I 
____ __________________ _______  

_____r . -  - - - 
-.

- -  — - - - -



4.2 Quadrature over F

Eq. (4.17) yields the following theorem.

THEOREM 4.4 [45]: Let F E B(V) . Then

00 F(z k) e~ ”1”~(4.31) I F(x)dx-h ~ N(F ,V)
k--co ~‘(z ~) 2 sinh(Trd/h)

Moreover, if F/q~’ satisfies (4.15) on F , then by taking h = [2ITd/(aN)]W2

- 

(4.32) J F(x) dx-h 2 

F(zk) 
<C 1 e

2 1
~~~

2

• F k=-N ~‘(Z~) --

where C1 depends only on F, d and a

EXAMPLE 4.8: Let F = [-1,1] , and let FE B(V) where V is defined in (4.9) .

On [-1,1] , let

(4 .33) IF(x) < C ( l-x 2) , a >  0 , C. > 0

a condition equivalent to F/4,’ satisfying (4.15) on F = [-1,1] - Then by

taking h = [2ITd/ (OIN) ] 1”2

J F(x)dx-h 2 2e~~ f( e - . l)
-1 k—-N (l+e ) e +1

(4. 34)

< c1 e
2
~~~0

1”2

where C1 depends only on F , d and a . The formula (4.15) yields accurate

results for the integration of function F such as F(x) — ( 1-x~~
1”3 (l+x) 3”5 log(1-x)

or F (x)-(l-x) exp{- 2/(1-x) } . 
-4 
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EXAMPLE 4.9: Let F = [0,co] , and let F E  B(V) where V is defined in (4.11) .

On [0,co] , let

C X a-l 
, 0 < x < l

(4.35) IF(xfl 
~ {C ~~~~ , 1 x 00

a condition which is equivalent to F/4,’ satisfying (4.15). Then by taking

h =

(4.36) 
~ 

F(x)dx-h~~ e~~F(e~~)~ < C 1 e
2
~~

N
~~

where C1 depends only on F, d and a . The formula (4.36) does an accurate

job of integrating function F such as F(x) = Xa l /(l+X)2c~ , or

F(x) = x 3”2sin(x/2)e~~

EXAMPLE 4.10 [22]: Let F = [0 ,co] , and let F E B(V) , where V is defined

in (4.14) . On [0 ,co] , let

(4.37) IF(x) I <{ C x~~~ if 0 ~ x ~ 1 } a >0
C e if 1 < X < c o

a condition which is equivalent to F/$’ satisfying (4.15). Then by taking

h = [2ITd/ (aN) ]~~
’2

F(x)dx-h~~ 
l+e 2

~~ 

F {log[elth+ ~ /
‘
~~~~~~~~~] }

(4.38)

< C  ~~~— 1

where C1 depends only on F , d and cx . The formula (4.38) does an accurate

job of integ rating functions F such as F(x) - x 1”2 log[l-~~~ 
Xle~X/2 

,

F(x) • x 2”7e~~ , or F(x) — x 5exp {-((x- 5) 2+2] ”2- 1/x2 }sin(3x) .

.-~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -—

~~~~~~~~ 
—

- 

•~~: ~~~~~
- ,- 

. -
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4.3 Approximation of Derivatives on F -

Except on R , the formula (4.18) is not useful for accurately approximating

derivatives of F on F , since the terms 4,’S(k,h)°4, are unbounded on r
Then to get a formula for approximating f(m) on F it becomes necessary to

modify (4.18) by introducing a “nullifier” function g with the property that

{-
~~

-)
“ 
{g(x)s(k,h)o~ (x)}

is bounded on F , for n=0 ,1, . . .  ,m - Upon replacing F in (4.16) by F4,’/g

we get

ThEOREM 4.5 [25J: Let F4,’/g E B(V) - Then for all x E F

00 F(zk) g(x)S( k ,h) o4,(x)
k~-co g(z~) 

-

(4.39)

g(x)sin[ -ir 4,(x) /h] f F(z) 4 , ’(z) / g(z)  dz
27T1 

~~~~ [4,(z)-$(x)]sin[r4,(z)/h]

Let

(4.40) [-~J g(x) sin (-n q, (x) /h] <—

for n 0 ,l ,.. . ,m , for all x E F and z E ~V , where C2 is a constant

depending only on m, g and F . Then there exists a constant C3 , depending

only on m, g, d and F , such that for all x E 1’

F(~~) g(x)S(k ,h) 0$(x)~
k--” g(z.~)

(4.41)

~ 
C3h~~ e

h/’h 
, n—0 ,l , . . .  ,m

~~~~~~~ 
- -

~~~ • 

- -- . 

~
-——- 

- 

-.-
~

- 
- -  

: --- :
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Moreove r , if F/g satisfies (4.15) on F , then by taking h = [-rrd/(aN)]1”2

then for all x E F

n N F(z k)F~n) (X) - I- .
~~~~~~~ ~~ g(x) S(k ,h)o4,(x)

k - N  g(z1~)
(4.42)

n+1 1/2
~ C1 N

2 
~~~~~~ , n=0,1,... ,m

where C1 depends only on m, g d, F and a -

The function g takes on different forms for different values of 4,

although g(x) = [l/4,~(X)]
m is usually satisfactory. In addition Theorem 4.5

presupposes that all derivatives of F vanish at a certain rate as x~a and as

x-~b along F - We shall present special forms for g as well as procedures

for making a number of derivatives of F vanish at a and at b in the

examples which follow.

EXAMPLE 4.11 [25]: Let F = [-1,1] , and let V be defined as in (4.9) . Let

us take

(4.43) g(x) — (l_ X Z) m

and let us assi.m~ that [F 4,’/g] E B(V) where F(x) 4,’ (x)/ g(x) = 2F(X)(1~X
2yml

Furthermore , on [-1 ,1] , let us assume that

(4.44) F Cx) F(xL ~ C( l_ X 2) a
g(x) (1-x ) -

a condition on F/g equivalent to (4.15). Then by taking h = [-n-d/(cxN)]112

~P~~~(x)- [~~) { 1! ( l-.X2) m sin [ 
~

- log(~~~)]~~ 
(~1) kF(z kV( l- .Zk ) m }

(4.45) X

n+l 1/2 -

~ NT e  IT 
, n—0,l,... ,m , 

-

-- a--— -. ——--— - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . —
-a
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for all x E F - More generally , let F (m) be analytic and bounded on V and

F(m) € Lipa (
~

) , where ~ denotes the closure of V . In this case (4.44) may

not be satisfied. However , the function

(4.46) G = F
~~

pm

satisfies (4.44) as well as all of the other conditions required in (4.45), where

is constructed as follows. Set

(4.47) p0 (x) = a
0 
I~~2~~ + b

0 ~~ 
•

where

(4.48) a0 
= f( - l)  , b~ = f (l)

and

1_ ,~k+2 ~÷ 
k+l k+l 1+ k+2

(4.49) pk+l(X) = p
k

(X) + a.~ . 
1 .

~ [—2
~J 

+ bk+l(-~~} {-~J
where

2k+l. 
[f (k+1)(1) -

(k+l)!
(4.50) -

bk+l = ( 2 ) k4.l 
[f (k4l) ( 1)  - ~~(k+l)(1)J

(k+l)!

EX.NiWLE 4.12 [23]: Let F — (0 ,00] , and let F be analytic in the region V

of Eq. (4.11) . Let us assume that F(m) exists on (0,00] , let us take

g(x) — x1
~ , and let us asstm~ that $‘F/g E B(V) , where [~‘F/g](x) - F(x)/xm~ -

Furthermore, on [0,00] , let us assume that

I
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F ~~~ , 0 < x < 1
(4.51) (x) 

< ~ —

~
n ~~~~~~~ , 1< x - (~~ , n = 0 , l,..., m .

a condition on F/g equivalent to (4.15) . Then by choosing h = [ITd/(aN)1
V2

1 F(fl)(x)~ {~~J 
~ ~~~~~~~~~~~~~ log xJ ~ ( l ) kF( kh) fflkh

(4.52) 
IT k=-N log x-kh

n+1
~~~ C1 N~~~~~~~~~ ~~~~~~~ , n=0,l,. - . ,m

for all x E [0,co) , where C1 depends only on F, d, m and a . More

generally if F (m) 
E B(V) and if F(m) € LiPa (

~
•) , then F may not satisfy

(4.51) . However , the function G usually does satisfy all of the requirements

of (4.52), where

G( x) = F( x) - 
~~ 

a~x
k

(4.53) a0 = F (O)

= [F~~~~~(O) - 

k~l 
( l ) k J k! a.] , k=l ,2 , ...  ,m -

j =0 ( k -j ) !

_ _ _ _ _ _  _  

• I~~ I~ ~~~~~~~~~~~~~~~



-49-

4.4 Approximation of the Indefinite Integral on F

We shall give a general formula for approximating

(4.54) 1( x) = J F(t)dt  , x € F

a

in Theorem 4.6 below. The special forms of this formula for the cases of

Examples 4.1 to 4.4 are omitted , since these special cases are simply obtained

by direct substitution . The results of this formula are especially suited to

the solution of linear initial value problems and to some linear Volterra integral

equations . - The solutions of these equations may have a singularity or a boundary

layer at one or both end-points of F

THEOREM 4.6 [24]: Let F E B(V) , and along F , let

(4.55) F(x) 
~ C

where C and a ’ are positive constants . Let 0 < 8 < JT/d , and let G E B( V)

where

x ½84,(x) b
(4.56) G(x) = 

Ja 
F(t)dt - 

e~~”~~+ ~~~~(x) ía 
F(t)dt

Let

(4.57) a = min(a’,B)

Then for h - [ii-d/ (c*N) ] 1”2 

~~-



-so-

X ½84 (X)
(4.58) 

‘a 
F(t)dt - 

~ 84, (X)~~ e _½8
~~~~ J~ F(t)dt

N N F( z .)
- h

k~~N {j~~N °k-j  
~~~~~~~~ 

- 
~~~~~~~~~ 8jh ~~ e~~8Jh ) Z J~ 

F(t)dt ~~~ } . S(k ,h) o 4 ,(x)

< C 1 N e
IT~~~~

12

for all x E F , where 
~k is defined in (2.15) , and where C1 depends only

on F, d and a -

In applications the integral J F(t)dt is approximated by means of
formula (4 .32) , i.e., by h N F(z~)/~’(z~) -

For example , in applications , the formula (4.58) may be used to approximate
an integral such as J~ t

2”3(log t)( 1-t~~
5”4dt , x € [0 ,1] -

-.1
— 

- •.* 
- _———— 

-- - - • .- -~ - - .-,~ -- ,. _ 
-
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4.5 Singular Integrals on F -

In this section we consider the approximation of the integrals

(4.59) (HF) (x) ~~~~~ 
‘F 

~~~~~~~ 
dt , x € F

(4.6 0) (u F)( x) J [(x~t) 2+y 2
] 8

~~
/2 F(t)dt , x € F , y >  0 , S > -1/28,y F

-
. 

(4.6 1) (v 5F)( x) J~ 
x-t~

8
~~ F(t)dt , xE F , S > 0

(4.62) (wF ) ( x) f 1og~x- t J  F(t)dt , x E F

The results of this section are believed to be new.

Although the last three of these integrals can be evaluated via the method

in Sec. 4.2 , by splitting up each integral as an integral from a to x plus

an integral from x to b , the methods developed in this section are more

efficient , since we derive explicit approximate expressions • that are valid for

all x E F - This increased efficiency is especially important in the solution

of integral equations , where the major difficulty is the evaluation of many

singular inner product integrals.

Although the case of HF is done fairly generally , due to its importance,

the procedure for the case of the remaining integrals is illustrated only for

special intervals . We have also left out the case of 
f
~F(t )1og [Ix~t~2+ I y f  2~ dt

since formulas for this case can readily be derived by combining the procedures

for (4.62) and (4 .60) .

A simple treatment is required for each of the above integrals , in order

to be able to use a suitable formula in Sec. 3 , after~transformation from V

to 
~ d 

- Denoting an arbitrary one of the integrals (4.59) to (4.62) by TF ,

.‘.- —------— - -—~ -—-—_ - - - -—— — —-_  —*—--- _ — - _ _

~~~~~~~~~~~

_ _ _____  • —  — - • - -~~-

a~~.
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we assume that F is continuous and bounded on F , and we first set

( 4 . 6 3 )  F = L F + E

where LF is a simple, suitable explicit interpolation of F at the end-points

a and b of F . Then E is cont inuous on r , and E( a) = E(b) = 0 . We

then construct a simple “polynomial” p , defined on I’ , such that

p(a) = p(b) = 0 , such that P = Tp can be explicitly expressed , and such

that the function G defined by

(4.64) G = E - p

satisfies : -

TG exists on F

(4.65) (TG)(x) 0 on x a or b , along F

G is analytic in V

At this point we can apply a suitable formula from Sec. 3 to TG , after

transformation from V to Vd
Let us illustrate the above outlined procedure on examples of the

approximation of (4.59) - (4.62) .

EXAMPLE 4.13: The Hilbert Transform over a Finite F . Let us make the

following assumptions:

(i) F E B(V) , where V is bounded, and r is finite. Let a and b

denote the end-points of F

(ii) F E L1pcx(~
) , where 0 < cx < 1 and where ~ denotes the closure

of V .

The function LF referred to in (4.63) takes the form

L
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(4.66) (LF) (x) = x-b F( a) + 
~~~~~~~~ F(b)

The function E = F - LF then satisfies 4 , ’E E B (V) [ 36] , and moreover, for

all Z E  ~

(4.67) IE(z) ! <C I  (z-a) (z-b) Ia

where C is a constant. In particular, the integrals

(4.68) (HE)(a) = f ~~~ dt (HE) (b) = 
‘F 

~~~~~~ dt

exist and are finite. Let p and q be polynomials defined by

p(t) = 6
3 

(t- a) (t-b) (t-.~.b --~- a )
(b - a)

(4.69)

q(t) = 6 

~ 
Ct- a) (t-b) (t-4 a -4b )

(b - a)

Then, define P and Q by

P(x) = (Hp) (x) = p (x) log (~~.~) + (b-a)p’ (x)

+ 
~~ 

{(b-x) 2 - (a-x) 2 }p”(x)

+ 
~j~- 

{(b-x) 3- (a-x) 3}p” (x)
(4.70)

Q(x) = (Hq) ( x) = q(x)log(~~.~) + (b-a)q ’( x)

+ 
~~~ 

( (b-x) 2 -(a-x) 2 }q”(x)

+ ij~ij .  C(b-x) 3- (a-x) 3}q”(x)

The function p, q, P and Q have the following properties :

— ~- —_ — — _— —_--—-—- ———- — 
— ~~~ ~
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p(a) = q( a) = p~~~) = q(b) = 0

(4.71) P( a) = Q(b) = 1

P(b) = Q(a) = 0

Now let us define G by

(4.7 2 ) G(t ) = E(t)-p (t) (FJE) (a)-q (t)HE (b)

The function G has the following pr operties :

E B(V)

G E Lip (~)

( 4 . 7 3 )  G satisfies (4.67) in ~

(HG ) (x) exists for all x E I’

(HG)(a) = HG (b ) = 0

N* (G ,V) = sup N(—~-- , V) < 0 0
xEF X

Upon replacing t by Il, (u) , we get

- 
(4.74) P.V. J dt - ~~~~~ J {Gc~~ufl u-4,(x)~p ’(u) } du

I’ R ~p(u ) -x u-4,(x)

Now using (3.40) on this last integral yields

- ~~~~~~~~ --- ~~~~~~~~~~~ ~~~~~~ - —- ~~~~~~~~ - - ~~~~~~~~~~~~~~~~~ -— - - -— -- - - - --——--- -~~~~~~~~~ 
_—

~~~~~ - - _ - - -_-~~~~~~~~~~~~~~~~~~ .

~~~~~~~~ 
<a:-



~P.V. J ~~~~~~~~~ dt + 2h ~~~~~~~~ sin2{~~ [4 ,(x) -~~}} 

IF k -°° ~~~‘(Z ~~~) X
~

Zk

(4.75) 
-

<1 N~ (G,V) [l +e~~~Th
]2s~~~(ITd/h)

Collecting the above results and using the (3.49) approximate form of

(3.47) , we get the following theorem .

THEOREM 4.7:  Let F E B( V) , where V is bounded , and let F E Lip (~)

where 0 < a  < 1 . Let h = [-rrd/ (ctN) ] 1”2 . Then for all x E  F

‘F 
~~~~~ dt - [F(b)-F(a) ] - (EF) (x) Ióg (~~~)

-P( x) (HE) (a) - Q(x)(HE) (b)

(4. 76) + h 
~~ 

{ ~ G( z)~~ [l- -1)~~~ S(k ,h) o~ (x)~k— -N j = -N 4 , ’ ( z . )  Zk Z .
j *k

~ C1 N3”2e (-irdaN) 1/2

where E - F-&F , LF is defined in Eq. (4.66) , G in (4.72) , p and q in

(4.69), P and Q in (4. 70) and where C1 depends only on F , d and a

EXAMPLE 4.14: The Hu bert Trans form over [0 ,00] . Let us make the following

assumptions:

(i) F E  B(V) , where V is defined in (4.11) ;

(ii) F E  L
~Pa {z : Iarg z i ~~ d , 0 ~ Iz i ~~ 

p} , for some p > 0

Let E and G be defined by

- —— a- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - .. - - — 
- - ______
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E(t) = F ( t ) -F ( 0 )/ ( l+ t )

(4.77) 2G(t) = E (t)- (HE) (O) t /(l+t)

The formula analogous to (4.72) then becomes

~.v. J~ 
G (t)  dt + 2h~~ e~~G(e~~) 

~~~~~g ]  I
(4.78)

1 N*(G ,V)
s1 -1~-

for all x € [0,00] and for all h > 0 , where

p00 -id - -id
(4. 79) N*(G,V) = sup 

~ J I I G(Pe
d 

) 
+ 

GfP e ~ I ~ }~~(0 ,00) 0 pe -x pe -X

Thus be choosing h = [-rrd/(ctN)]1”2 , it follows that

k~ J F(t) dt - )~~~~~~~~~ log(l/x)

- 
[ 

X 

~~ 

log(l/x) + ~~—] (HE) (0)(l+ x) X -

(4.80) 
+ h 

~ 
{ ~ eJhlG(eJ~ ) [l-(-l)~~~ ]}.s(k,h)olog x I

k—-N j --N e -e3
- j *k

< C
1 ~

3/2e~~~~~~~
’2 

-

for all x E [0 ,00] , where C1 depends only on F, d and a

We remark that in applications, the integrals (RE) (a) and (HE) (b) in

(4.68) are evaluated by means of formula (4.32) and 
- 

the integral

(izE) (0) - (E(t)/tjdt in (4.80) is evaluated by means of formula (4.36) .
-‘0

_ _ _ _ _



-57-

We remark also that (4.76) and (4.80) provide a convenient expression for

solving Hu bert-type problems (see e.g. [11]) and integral equations with

Cauchy- type singularities over clc6ed contours.

EXAMPLE 4.15: The Integral (J5 y F for F = [0 , 1] . In this case we want

to approximate

- 
f l

(4.81) ((J o f ) ( x) = j [(x-t) 2+y2 ]~~~~~ f( t)dt
0 -

where f € B( V) , V as in (4.7) , and where F E Lip CD) , with 0 < a  < 1
00 

(a) (b) a
Us ing the notation F(a ,b;c;x) = 

~k=O 
k k 

~
k for the hypergeometric

(c) k k!

function, it may be shown that if n is a nonnegative integer, then

w~(x,y) f t~~[(x- t) +y ] 
- dt

JO

(4.82) = x’~~~(x
2+y2) ~~ ½F( S+½, l;ç; 2

X
2 ~

+ ( 1 )  [(i-x) 2+y2 ] F(8+½ ,1;~~~ ; (l-x) 2 
2 )

(l x) +y

Let us define if , E and C by

(Lf) (x) = ( 1-x)f(0) + ~f(l)

(4.83) E = F - L F  
-

G(x) = E(x) - x(l-x){(ax+b) (U f)(0) + (~~+d)(u f)(l)}8,y 8,y

where

_ __ _ ___ _ _  ~~~~~~ --~~~~~~~~~~
_ - -_

-

~~



a = (3w2 -2w 2 -2w3-w1Y’ , c = -a

(4.84) b = (w3-2w2+w1)(w 2 -w1Y
1a , d = -(w2-w3)(w1-w2Y

1a

w~ = w (O,y)

By taking h = [-ird/(aN) ~1~”2 
, we thus find by proceeding on for (3.51) , that

J [ (x~t)
2+y2Y~~~f(t)dt - w0

(x,y)f(0)
0 

H

- w1(x ,y) [ f ( l) - f (O ) ]  -

- [w 2 (x ,y) -w3(x ,y) ] [a(U
5~~E) 

(O)+c( U
5 ~

E) (l) J -

(4.85) 
- [w1(x ,y) -w2 (x ,y) ] [b((15 E) (O)+d(u 5 E) (j .) ]

N ~-N G(z.) (zk~
z.)2+y2 -8-½

- i -j ~ 2 2 r.~~(4(y),B,h)k-N j- N 4’(z~) (kh-jh) +4(y) 
3

.S(k,h)o
~
(x)

I ~ 
C1 N

312e~~~~~ 

-

for all x E [0 ,1] , where q (x) — log[x/(l-x)J ‘ Tk is def ined in (2 .29)

Zk in (4.8) and where C1 depends only on f , d and a . In applications

((J

5
~~~~~~ E) (O) and (U

8~~
E) (l) are evaluated by means of formula (4.32) . It

may also be convenient to approximate w~(x ,y) by [Lwn (
~ 

,y) ] Cx)

+ 

~k—-N ~
w

fl
(z~~Y) [&w~( ,y) J ( z.~)J S(k ,h)olog ~~~ , where zk - ½~½ tanh(kh/2)
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EXAMPLE 4.16: The Integral (V
5

f) for F = [0 , 1] . Let f satisfy the

condition of the previous example . We want to app roximate

fl
(4.86) (V f) (x) = I x-tI~~ f(t)dt , 8 > 0

S

As above ,

(Lf) (x) = (l -x)f(0) +xf( l)

(4.87) E = f - L f

G( x) = E( x) - x(l-x)[(a+bx) (V5
E) (O)+(c+dx) (V5E)(l) ]

a = (8+2) (5+3) c - 
(5+1) (5+2) (5+3)

8-1 8-1
(4.88)

b -2( 8+2) d (8+1) 28+2
8-1 8-1

Then , by setting

I~ (x) = 
~ 

tnIt~X I B
~
ldt

(4.89)

— n! 54-n 
+ (1-x) 8 

~ (fl) x (l x)
(8+1) k=O 8~k

for n - 0 ,1, 2 , 3 , and taking h - [ird/ (cxN)]1”2 , we have

-- - - -  - _ - - -a--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
. -- --- —— ___ _4 , -~‘~—r-4 

-
~‘
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i-i
I Ix-t I 8~~f(t)dt - [I 0 (x)f( O)+ {11(x)- 10 (x) }f(l) ]

J O

+ [a{I3(x)-12(x)}+b(12(x)-11(x)}] J t 8
~~E(t)d t

1
+ [c(13(x)- 12 (x) }+dC I 2 (x) -I 1(x) }] 

~ (1-t)8~~E(t)dtJO

(4.90) 
h 
F(5)cos(~~-) N fh 1-ir1~

8 G(zk) -

- 

k=~-N 
1 1-8 

~
‘(zk)

8 
-

N G(z.) Z.
~~

Zk 8-1 ir
+ 

- I I t cos [ (k
~

j) t]dt }S(k ,h) o q (x)
Ir N ~‘( z . )  j k o

<C 1 N3/2e~~~~~
) ’ _ 

-

for all X E  [0 ,1] , where z~ and ~(x) are defined in (4.8), and where

C1 is a constan t depending only on F , d , a and 8

EXAMPLE 4.17: The Integral V5f for F [O ,co] . Let f satisfy the

condition in Ex.4. 14 . We shall approximate the integral

(4.91) 
- Ix-tI 8~ f(t)dt , O . < S < 1 . -

To this end, we set

(L~~~ (x) = ___  
- -

(4.9 2) E = f - L f

G(x) - E(x) -a X 
2 (v5E) (0)

(l+x) 

~~~~~~~~~~~~~~~



where

(4.93) a = 
Si

Then , setting

Io(X) = f Ix-t1 84 
~~

= F( 1 ,8; l+B ;—) + (1+x) 
-

- 5(1+x) 1+x sin(-rr 8)

(4.94) 11(x) = 1
00 

Ix-t I 8~
’ tdt =

J O (1+t)

= 1 x5
~~ F(2 ,8;2+5 ; x - it(x+8) 

2~8
~~(8+l) (1+x) (1+x) sin(-rr8) (1+x)

and taking h = [ird/(a’N~~
”2] where a ’ = min(a,8) , we have

I I Ix-t1 84f(t)dt - f ( 0) 1 0 ( x) -a (V 5E) (0) 1 1(x)

- 
hr(B)cos(!)~ N 

{
(-w/h)l 8  

e8lthG(e~~)
(4.95) - 

-

N h ~h eJh~e~~ 5-1 it
+ ~ e3 G(e3 )~ 

~~ f t cos[(k-i)tldt)
0

j*k

•S(k ,h)oiog x ~ C1 N3/2e~~~~~~~~

for all x E (0 ,00] , where C1 depends only on f , 8, d and a ’

In applications (V
8E) (0) is evaluated by means of formula (4.36). It

may also be convenien t to approximate the terms in I0 (x) and 11(x) involving

hypergeonetric functions by (4.26) . The 2N integrals

- • - • ~~
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J t 8cos(kt)dt = it~~~~~~
8 J t 8 cos(itkt)dt , k=l,2,... ZN may be evaluated

using (4.32).

EXAMPLE 4.18: The Integral (WF) for F = [0 ,1] - Let F satisfy the

condition in Ex. 4.15. We want to approximate

,.1
(4.96) (WF) (x) = J log~x-t~F(t)dt

0

We aga in set

(LF) (x) = (1-x)F(0)+xP(l)

(4.97) E- = F - iF

G( x) = E(x)-(1-x) [(a+bx) (WE) (O) + (c+dx)WE( 1)]

where

a= - 24 c = 2 4

(4.98)
42 78

b = - ~- d = -
T

Setting

n
I~ (x) J logIx -t lt  dt

0

(4.99) — ._;L~ {x~~½og x + (l-X) ’~’~ log(l-x)

x”
- Lk~,O n+l-k

for ii — 0,1,2,3, and taking h — (-ird/ (aN) ]
1”2 

, we have

---- -- -._ - --— S — _ _  — --

_ _ _  -- - . -



-63-

I J 1og~x-tJF(t)dt-[I0(x)f(O)+{I1(x)-I0(x)}f(1)]

+ [aC 13(x)-I 2 (x) }+b {12 (x)- 11(x)}] J E( t) log t dt

+ [cC 13(x)-12(x)}+d(12(x)-I1(x)} ] j E(t)log( 1-t)dt
(4.100) 0

N ( G(z k) 
1- h ~~~~~ log

k=-N 1
~
’(zk)

+ 

~ G(z)~ 
[logI

Z1~~i~ + 

~~~
_ , i t  

~~~~~~~~~~~~~~~~~~~~~~
j=-N q’(z.) kh-jh ~ 0
j*k

< C1 N~~
2e~~~~~~

where ~~x) = log[x/(l-x) ] , and where C1 depends only on f,d and a
fl

In applications , the integ rals I E(t)log t dt , I E(t)log(l-t)dt and
JO

,

Ir 
1-cos kt dt (k=l,2,. . . ,2N) are evaluated using (4.32).

EXAMPLE 4.19: The Integral WF for F = [0,00] . In this case we shall give an

approximate expression for the integral

p00

(4.101) (WF)(x) = J 1og~x-t~F(t)dt
0

where F satisfies the conditions in Ex. 4.14. We assume also that (WF) (x)

exists for all. x E [0 ,00) . Proceeding as in the previous examples, we set

a-
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(LF)(x) = F(O)
(1+ t)

E = F - I F

G(x) = E (x) - 

~ 
(a+ )

(l+x) 1+x
(4.102) 

00

a = ¼ J [4log t + 6]E (t ) d t

0

b = ¼ I [18-log t]E(t)dt
J O

Let us also set

1~ (x) 
~~ 

log~x-tj dt = ~~~ log x

11(x) = 
tlog~x-t ! dt

0 (1+~)

(4 .103) 
= 

(l+~j~ 
log x + ½ Cl÷ (1+x)(2+x)

12(x) = 
t logix-tI dt

0 (1+t)

= ~~~Cl- 
1 

2 } b 0 g x + ~~ 
X 

3 log~~.t2.~(1+x) (1+x) X

+ 
1 4x+6 1 

+ 
1 (x+2) 2 -4

~~ 
(l+x) 2

~~+x) 2 - ½ 
~ (l+x) 3

- ~—--.-- ..‘- — — - 

— 

- 
—
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Then , by taking h = [ird/(aN)]V2 , we get

I J 1ogIx-t~F(t)dt-I0
(x) F(O)

- aI1(x)-b12(x)

- h ~ {lth e~~G(e~~)
k--N

(4.104) 
N kh •h

+ 

j =~-N 
e c(eJh)[log~~~~~~

j*k

+ 

~~ J~ 
1-cos~(k-J)t] dt]} 

S(k,h)olog xl

~ C1 N
3/2e d

~~

for all x E [0 ,00] , where C1 depends only on F, d and a .

I

_ _ _ _ _ __ _ _  _ _  -- -- ---- --~~~~_— —

:- -.

~ 

-‘~ -~~ -~~
-.: - ‘~-



5. APPROXIMATION OF TRANSFOI~1S ON F

The approximation of Fourier transforms over (~00,00) was discussed in

Sec. 3, where the trapezoidal rule yields the FFT method. In this section

we briefly describe methods for appr oximatin g the semi - infinite Fourier , the

Laplace , the Mellin and the 1-fankel transforms, namely -

(5.1) F(F ,A) = J F(t)e~At dt

(5.2) L(F ,A) = J~ 
F(t)e~~

tdt

(5.3) M(F ,A) = 

~~~ 

F(t)tX~~dt

and

(5.4) H(F ,A) r= F(t)J (At)dt

respectively [ 24] .

The integral F(F , A) m ay arise as a sine or cosine transform, in the

process of approximating 
JR 

F(t)e~~
t dt , when F has one or more

singularities on R . More generally, in the approximation of any of the above

integrals, if F has a finite number of isolated singularities on the interval

of integrat ion, then we reconm~nd splitting up each integral into a finite

number of integrals, in such a way that singularities occur only at the end-

points of each interval. Over any such finite interval (a ,b) , we reconinend

using the formula

-.
,

~ I 

______________ ______ ________________________

-_
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b N kh kh
(5.5) J G(t)dt ~ (b-a)h ~ e 

2 ~
a+be 

~a k—-N (l+e ) 1+e

while over (0,00) we reconmend using one of the formulas (4.36) or (4.38).

Usually (4.36) works well for (5.2) and (5.3), while (4.38) works well for

(5.1) and (5.4).

An additiona l difficulty occurs for the application of (4.38) to the

approximation of (5.1) and (5 .4) , where the integrand decreases slowly.

Consider for example, the approximation of

(5.6) F(F,A) = J°3 ~112 sin At dt
by a trunctation of

00

(5.7) S(F,A) = h ~ 1 k_.
11p 

sin(Xzh)
• 

k- ..OO Il+e 2
~~ 

l+z k

where zk 1og[e~~ +f~i+e 2~~~J . This series sum (5.7) is quite acc~~ate

if h < min (1, i t/A )  . For large positive k , zk — 1th~log 2 ; hence if

A > 1 and h < it/A at least one of the points Zk falls between every

consecutive pair of zeros of sin At , and S(F,A) is then a very accurate

approximation of F(F ,A) . We then reconinend splitting the series S(F ,A)

into two parts

00 N 00

h ~ — h  ~ + h  ~ .

k--co k--co k-N+l

The integer N is chosen so that zk / (l+ zh) < 1/2 (say) if k > N

and so that the series includes all and only ihe terms for which
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Zk 
< ~.m 0-7T/ A , where u0 is a positive integer. Direct summation and

t runcation of the infinite series h produces no difficulty, since

this tail of the series h converges very rapidly. The series rk-N+1
is summed by evaluating the first few

1 1/2
t = h -Zkh 

Zk sin(Azk)

(5.8) 
~4~~

<Z
k
< ~~~~ 

1+e l+Zk

Ii > Uo

and then applying Euler ’s method of summation to approximate the alternating

series t

The zeros of J
~
(At) are asymptotically equi-spaced for large t and

the above described procedure may be similarly applied to the approx imation of

R
~

(F,A)

The approximation of each of the four integrals (5.1) - (5.4) by the above

outlined procedure is described in detail in [24], where many examples are

considered , illustrating the accuracy and superiority of these methods over

other methods . It is furthermore shown in [24] that these methods may he

used effectively for A up to 100. If A > 100 , we recommend asymptotic

method [3,31,41,42 ,59].

a- — —  _____ 
________ — — -

~~ -



6. APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS VIA TI-fE SINC -GALERKIN METHOD.

In this section we shall illustrate the application of the cardinal function

approximations to the solution of second order boundary value problems [53].

We defer the solution of initial value problems to Sec. 7, where we illustrate

their solution as a special case of the solution of Volterra integral equations.

The method of approximate solution of ordinary and partial differential

equation boundary value problems which we present here is carried out by the

Galerkin scheme [44]. It is perhaps best illustrated by considering the solution

of the simple second order linear boundary value problem

(6.1) (Ef)(x) = f”(x)+ i.i(x)f’(x)+u (x)f(x) -T(x)=O , x E  F

(6.2) f(a) = f(b)—0

Other illustrations of solutions of ordinary and partial differential equation

boundary value problems are given in examples at the end of this section.

Throughout this section we shall consider only the solution of second order

boundary value problems.

Let A(u) denote a diagonal matrix with diagonal elements (U N,U N+1,.. .UN)

where u
k 
- U (Zk) , let 1 denote the vector (1,1,... ,1)T , and let

i (1) and denote the matrices

- ~ •— ~~~~ - - • -  a- —.-~—-—r-—--—--— -~~ 
- - - -  - —

~~~~ 
- — - -  _— -— — -- - -  -- — 

- 
— -

- - , •  - - • -, • - -
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1 10 -1 ½

1 0 1 1½ 2N- 1

(6.3) r(1) = [6~~~~] = 

1 1 1
2N 2N- 1 ZN-2 0

-it2 2 2 2 2

(2N) 2

2 -it
2 2 2 2

2 2 
- 
T 

- 

(2N- 1) 2
(6.4) i~ ~ = [~5~~

)
1 = -

2 2 . 2 2 -it
2

- 

(ZN) 2 (2N-1) 2 
- 

(2N-2)
2 

(2N-3)
2

Let us now make - some assumptions on If in (6.1). Using the notation

of Definition 4.1, let .i,v and ~ be analytic in V , such that (6.l)-(6.2)

has a m.niique* solution f for which

(6. 5) f’/ ~~~
’ , f’ ji /~ ’ , fv/~’ and a/c~’ E B(V)

and such that f satisfies (4.15) on F

We approximate £ on F by

N
(6.6) f(x) � fN (x) E 

~ 1k S(k ,h)° p (x) .

k--N

*The assumption of uniqueness may be bypassed via the use of the
generalized inverse.

_ _  _ _  ----~~~ - --~~~ -—
-• • - - ~~~~~~~~~~~~~~~~
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The Galerkin scheme enables us to determine 
~k ~ 

f ( z k) by solving the linear

system of equations

(6.7) (Lf~~S(k ,h)o~) = 0 , k--N, -n+1 , .. .  ,N

where the inner product in (6.7) is (nearly always) defined (for second order

problems) by

(6.8) - (u,v) = ~ 
1 u(x)(~Tk))dx

THEOR~~1 6.1: Let the above assumptions be satisfied. There exist constants

C1,... ,C6 , depending only on f , d and a , such that if h =

then

(6.9) 
f F 

a(x) S(k ,h)o~(x)dx-h 
.... ~~~~ < C1 N

/2e k
~~

~~‘ (x)

h vkf(z
(6.10) f v(x)f(x) S(k ,h)o~(x)dx - 2 

k~ 
( 

~ C2 N 2e~~~~~~
F ~‘( x)

h
(6.11) J S(k ,h)o~(x)dx- 2 ~ c3 N

2e~~~~~
F 4’ (x)

N
S(k ,h) o~ (x) dx - — 

. ~ f(z~)ó~~~ ~ C4e~~~~~(6.12)
0

h f’(z)~(6.13) 
Jr 

~~~~ S(k ,h) e$ (x)dx - 2 < C 5 N 2e~~~~~~I —

N
(6 .14) f’(x) S(k ,h) o~ (x)dx-h ~ f ( z. ) I~~ ~~~~ 

1 ~
(2)} I

3 I. E jk I

< C  N1”2e~~~~~~

- - --~~~~~~~ —~~~~~~~~~~~~~~~~~~~~ 
- ..- • •

~ -

. 

~~~~~~~~ 
~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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Let 
~n 

= 

~~-N ’~ -N+ 1’~ ” ,fN) T be the solution of the system

(6.15) [~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ =

which is obtained from (6.7). Then the function defined in (6.6) then satisfies

3 /~~~ 
( ~fl l(6.16) I f(x) _ f

N (x) I < C1 N f L  ~itUW~)

for all X E F , where C1 depends only on f , d and a

We remark that the approximations (6.9) , (6.10) , (6. 11) , and (6. 13) may 4

be obtained by applying the formula (4.31) to the respective integrals . The

approximations (6.12) and (6.14) may be obtained by replacing f by 
~N 

and

then applying (4.31). A different family of approximations is also possible,

such as that obtained in [53] . For example , the above formulas yield the

approximation -

I = J f(x) [~~ ~ c. S(j,h)o~ (x)]S(k ,h)°~ (x)dx
F j 3

� f(x~) ~ c~ -

(~~ the other hand , if e.g. f is bounded on r we find , after integration

by parts , and then applying the above approximations, that

I — - J [
~~ 

c.S(j,h)o~ (x)] [f(x)S(k ,h)°b(x)]dx

~ c~ 
{._P._ f~ (~~.)~Sc~

) 
+

Both approximations have the same order of accuracy. The approximations of

Theorem 6.1 are usually simpler in form than those we obtain after integration

by parts.
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We also remark that the explicit expressions (6.9) - (6.14) make

“collocation” and “Galerkin” synonymous for this method.

The matrix 1(2) is the dominant matrix of the system (6.15). It is a

syninetric, negative definite matrix, with eigenvalues -Ak,k=-N,-N+l,... ,N

where -n-2/(N+1)2 < A~ < . Thus 1(2) is a well-conditioned matrix, with

condition number less than (N+l)2 
. The matrix i (1) is a skew-symmetric

matrix with determinant zero. It has eigenvalues iwk , where - T I  < wk < it

Contrary to the case of finite difference or finite element methods which lead

to sparse matrices, the matrix in (6.15) is a full matrix. However, the rate

of convergence (6.16) of the above method is considerably faster than that of

finite difference or finite element methods, which converge at the rate

for a system of order n , where for one-dimensional problems, q is usually 1

or 2. Moreover, under the above assumptions, the- O(e~~’~ ) rate of convergence

cannot be improved (see Sec. 9), regardless of the basis. Due to its rapid

convergence, the present method yields a desired accuracy with a relatively small

system of equations.

The reduction in the ~3JTount of work required is considerably greater in

two and more dimensions. In application, the coefficients of differential equations

in p dimensions are piecewise analytic functions in each variable . Singular-

ities of the solutions occur wherever the coefficients of the equations have

singularities but this occurs only on p-i dimensional surfaces. Thus (with

the exception of inverse problems, where determination of the boundaries is more

difficult) we can determine a priori the points, or surfaces where the singular-

ities occur , and using a system of order n , we can achieve as approximation

having an O(exp [ -cn1” (2p) ]) error. This should be compared with methods

based on finite differences , or on polynomial , or finite element-type approxi-

mations, for which the error is O(n~~”~) in p dimensions.

____ _______ ______ 

- - •
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We do not have a precise idea at this time, by how much faster we can

L solve partial differential equations by the above method than by finite

difference or finite element methods . The solutions of two-dimensional “model”

problems in the examples which follow seem to indicate that we can get by with

less than 1/3 of the work required of classical methods to achieve 3 places of

accuracy , and less than 1/10 of the work it takes for 5 places . Preliminary

calculations indicate the reduction in the amount of work required to solve

3 and higher dimensional problems is considerably greater, e.g. by a factor of

100 in 3 dimensions.

The above method also easily reduces a nonlinear equation to an algebraic

system. For example, for the case of the problem

L(f) = f”(x) + G(x ,f(x) ,f ’( x)) = 0

(6.17) - - 
_

f(a) = f(b) 0

if G(•,f,f’)/~’ E B(V) , then we can make the approximation

J G(x ,f( x) , f ’( x))

(6 .18) ~ (x) 
-

hG( zt.,f(z.k) , f ’( zk)) 
- 

- d’h+ O(e it l )

in which we replace f(z k) by 
~k and f’ (zk) by a linear combination of

the 
~k which is given by combining (6.11) and (6.12). The approximate

solution of (6.7) then involves the solution of a system of nonlinear algebraic

equations for the 
~k which is usually not an easy problem to carry out . —

Mixed conditions at an end-point require a modification of the form of

~~ (6.6) . Consider, for example, changing ~~ conditions (6.2) to

---— .--— a-- — ---
~~~~

‘
~~~~~~~~~~~ . 

— .
~~ 

- ,.
~.. 

-

4 - - - -: - -
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(6.2) ’ f(a) = a , ~f(b) + yf’(b ) = S

where I~I 2 + I~I 2 > 0 . In this case (6.6) is replaced by the approximation

(see Sec. 4.)

f ( x) ~ fN (x) = ~~~~ + A(x-a) + B(x-b)2

(6.6)’ N
+ 

~~ 
Ck (X b)S(k ,h)0

~~
(X) - 

-

k= -N

Clearly, 
~N 

satisfies (6.2)’ at x=a , since the sum 
~N 

ck(x-b)S(k ,h)o$(x)

is zero at x=a and at x=b . Also, f~ exists on all of F , except at -

x=a . In particular, the derivative of 
~~~N 

ck(x-b)S(k ,h)o4
~
(x) is zero at

x=b . Hence substituting 
~N 

for f in the second equation in (6.2)’

enables us to eliminate B in (6.6) ’ , - to get

fN (x) = a~-2E. + 
ya+ (b-a)6 (x-a) 2 

+-a 8(b-a) +Zy (b-a)
(6.6)” -

N - -

+ 
~~ 

Ck(X b)S(k,h)0~
(X) -

k=-N

where

(6. 6)” w(x) = (x_ a) [ l_ ~ 8(~~~~~~~~~~~
$(b -a) +2y (b-a)

The expression (6.6)” for involves 2N+2 i.mio~owns : C N, C N + 1 , . . .  ,CN and

A . We can thus carry out the approximate solution of (6.l) - (6.2) ’ by solving

the system of 2N+2 equations

—--- - -—-—_-

I - ~~ - ‘~~~~~
‘-~~• .  - -
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(LfN)(x)(x-b)S(k ,h)o~
(x) 

~r

~ 
h(LfN)(zk)/~~

2 = 0 , k=-N ,-N÷1,.. . ,N
(6.7)’

J (Lf ~) (x) u ( x)
F ‘

N (LfN)(zl,)w(zk) = 0
k=-N

It is tempting to deal with (6.2) ’ more simply by means of the approximation

(6.17) fN (x) = + + 
~ ckS(k ,h) o~ (x)

where ~i and the ck are unknown. Then , since the Zk “bunch up” near a

and b -, it is tempting to use the approximation

(6.18) f’(b) 
~ 

- b -zn

and to take care of the second condition in (6.2) ’ via this approximation.

However , this does not work . While (6.17) may be used as an accurate approximation

of f on F , the ck are close to zero for k large and positive (and also

for k large and negative) . Hence although the error I f(  ~~) - 
~N 
(ZN) I is

small ,

~ N 0’
~ ~~~N

(Z
N

)

(6.19) If’ (zN) - 
___________

b-ZN

may be very large (see Sec. 8.2).

- —~~~ — a-  ~~~~~~~~~~~~~~~—— -
~~~~~~~— ______________________

*Iv.
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The coefficients in (6.9) - (6.14) , for various contour F corresponding

to the mappings in Ex. 4.1-4.5 and the identity map of Sec. 3 are given in

Table 6.1. The entries are given both as functions of x , into which we may

substitute x=zk and also as functions of w , into which we may substitute

w=kh .

TABLE 6.1. THE COEFFICIENTS. IN EQS. (6-9)-(6.13)

F J~. ...ç 
—

(a) [0,1] log 
~~ 

xZ l_x Z
~

11 e
W)4 

2

__ = ½~½_tanh½w 
___________________

(b) [-1 ,1] log ¼ (1-x2)
~~~~~~ ~‘C (1+e )

____  _________ ~p(w) = tanh½w

(c) [0,oo] log x e2W -1

~j,(w) = ~~

2w 2
(d) [0 ,~ ] log sinh x tanh2x e

2 
-sech x

W 2w 1+e
~~ ip (w) log[e +1l+e ] l+e 2’

~’

(e) [_co , o] x 1 0

f 
__________________________
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Let us illustrate the above method on the approximate solution of some

“model” boundary value problems. The computations of these problems were carried

out by Burke [6].

EXAMPLE 6.1:

(6.20) c2f”-f+l = 0 , 0 <x < 1 ; f(0) = f(1) = 0

This problem has the solution

-(l-x)/~4 -x/c(6.21) f(x) = _______________

l+e

The system (6.15) for this equation becomes

(6 .22) [~~~ 
I (2) _ 2I (l) _4. A( x2 (1_ x) 2 ) ]~ =

Solving this system of equations yields the approximation

N
(6.23) f (x) = 

~ 
f
k
5(k ,h)0 log (—f—)N k=-N -x

Taking h = .75/N 112 
, N=16 , we get a solution which is accurate to 5 places

if c=1/5 and 3 places if c=l/lO . Similar accuracy could have been obtained

if instead of solving (6.20) we had solved

(6. 20) ’ c2f” -f+ x4(1-x) 4 
= 0 , f(0) = f(1) = 0

EXAMPLE 6.2:

(6 .24) f’ = f-f 3/x 2 
, 0 < x < ; f(0) f (ao ) 0

This problem is the radially symmetric form of the three dimensional nonlinear 

~. - — . . - — — - - _._---——--—————-.—--- -_ — —  —_ —--- — -~~~~~~~~~~~~~ -
_‘

~

4 - -~~



-79-

Klein-Gordon equation . Its solutions f satisfy ~‘f E B(V) , where V is

the region defined in (4.13) and where ~(x) = log sinh x . Moreover, f is

bounded on [0 ,oo] , f(x) = 0(x) as x -
~ 0 , f(x) = O(e~~) as x -

~ . Hence
we may expect the approximation

N
(6.25) LN (x) = 

~ 
f~ S(k,h)o(log sinh x)-

k= -N

to be accurate. Substituting (6.25) into the differential equations and using

(6.10), (6.13), (6.14) and the entries (d) of Table 6.1 we get the nonlinear

system of equations - -

2w
[
~ I~~~~~~+A ( 

1
)
~~~(l)~~~~~~~

( 
e 

~1+e l+e’ - -
-I-’ ~~

2w 3= - M(
l e ~~

)
t1og[ew+V~ +e2~ I }2~~ -

where = 
~~-N ~-N÷1 

) . Taking h = 75/N1”2 
, N=l6 and solving

this system by Newton’s method we are able to get the approximation of the
unique positive solution of the problem (6.24) which is accurate to 5 dec. on

[0,—j . The problem (6.24) has other solutions, and the system (6.26)

ha - 

~ ‘i~~~ r so lut ion.~ which approximatee these.

• a,,~. • -1 , (x ,y) € S — (0,l)x(0,l)

o,~ ;S

— ~ 
. 
~ 

1/ SiA,s titut ing the approximation
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N N
(6.29) u.~(x,y) = ~ u1.S(i ,h)o~ (x)S(j ,h) o~ (y)

1=-N j=-N ~

into (6.27), multiplying by [
~ ‘ (x)] 1S(k,h)oc~(x) [4’ (y) ] 

1S(~,h) 
o~~(y) , integrating

over S and using (6.9) and (6.13) yields the system

(6.30) BU + TJBT = W

where

B = 1(2) 
-

U = [u1~] , i,j=-N ,-N+1,... ,N
2w 2w(6.31) W = -h

2A( e 
2w 4)E A( e 

4)(l+e ) (l+e )

with E = [e.~] = [1] , i,j=-N,-N+l,... ,N

Setting*
A N

(6.32) B = f 1AT , A = A
N+1

we get -

(6.33) AY + YA =

where - 
-

Y = [y~~~] =
(6.34) -l= [w1~

] = -

*From the symmetry of the problem, IJBT = BU and we could therefore have
J solved (6.30) more directly, via the formula U = ½B 1

W . However the above
procedure is more general.

-_  — -----
. 

—

• S

-
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The solution of (6.33) is

w!. —

- (6 .35) = 
A .+X.

1 3

which yields

(6.36) U = T~~Y(T~~)T

Substituting this result into (6.29) we get an approximate solution U
N 

which is

accurate to S dec. on S . Similar accuracy obtains if the -1 in (6.27) is

replaced by [x(l-x)y(1-y)] 1

E(NVIPLE 6.4:

(6.37) u,~ = u
~ 

, (x ,t) E (0,1)x(0,o~)

+(6.38) u(x,0 ) = sln(Trx)

The exact solution of this problem is

2
(6.39) u(x,t) = e~~ ~5j~ irx

The Galerkin approximation

- uN(x ,t) = e 4tsin11x

(6 . 40) N N
+ ~ u1.S(i,h)o~(x)S(j,h*)o~*(t)

1=-N j=-N ~

satisfies the boundary conditions (6.38), where * ~(x)= 1og[x/ (l-x)], b *(t)_ log t .

*~)ij~ to the O(e~~
t) rate of decrease of u(x,t) as a function of t as

t ~ , we could have achieved greater accuracy by taking q~*(t) log sinh t

f 
asinEx .6.2.
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Substituting (6 .40) into (6.37) , we arrive at the system of equations

(6.41) BU + UC = V

where B and U are the same as in (6.30),

C = - !i~. I~~~A(eW*)
h*

(6.42)
2* e -4t2~ 2w*V = h h A( 4) [e sln(Tr zk)}A(e 

- )

(l+eW)

in which w is evaluated at kh, w~ at 9.h* , t~, 
= 9,zh* , zk 

= ½÷½ tanh(jh/2)

and where h = •75/N
1/2 

, h* = .5/N1”2 , and N=l6 . The equation (6.41) is

solved for U be diagonalization of B and C , and then proceeding similarly

as in Ex. 6.3. The resulting approximate solution is accurate to 4 dec. on S

_  

- í

F- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -—--— -. 
~~~~~~

_ — — ---



7. APPROXIMATE SOLUTION OF INTEGRAL EQUATIONS.

The solution of linear integral equations, like the solution of linear

differential equations, is analytic in each variable wherever the coefficients

of the equation are analytic. Thus we can determine a priori, the regions on

which the solution of a problem is analytic. This is usually the case for most

nonlinear integral equations arising in applications. It is often more

difficult to determine the exact nature of a singularity and it is in these

instances that the methods of Sec. 3 and 4 are particularly powerful. In

this section we illustrate the application of some of the approximations of

Sec. 3 and 4 on the solution of Volterra and Fredholin integral equations.

Basic to the method of approximation is the Galerkin scheme (see [18]

for a summary of this scheme for the solution of Fredholm integral equations;

the case for more general linear and nonlinear equations is discussed in [44]).

For our purposes, the function S(k,h)o~(x) play the most important role in

this scheme, and for the lmcst important kernels arising in applications the

explicit approximations of Secs. 3 and 4 enable us frequently to replace an

integral equation by a system of algebraic equations without performing any

numerical integration. Such procedures have been effectively carried out on

the numerical solution of one and two-dimensional singular integral equations

in [32 , 36] .

Let us consider the case of a one-dimensional problem, such as

(7.1) f(x) = (Kf) (x)+g (x) , x E F

where Kf takes on one of the forms

r x
(7.2) (Kf ) ( x) = I K( x ,t) f (t)dt

ft’4
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or

(7.3) (Kf)(x) = K(x,t)f(t)dt

We assume that V is a bounded domain, that g is analytic in V , that

g E Lip (V’) , 0 <c~ < 1 , and that for any such g , (Kg) has the same properties

as g . We may then expect (7.1) to have a solution f with these properties.

Assuming this to be the case, we approximate £ and g on F by

N+l
f(x) 

~ 
fN (x) = 

~ 
Ck ~~~~k= -N+1

(7.4)

N+ 1
g(x) ~ g~(x) = ~ 

d~ 
~~~~k=-N-l

where -

b-x
-

(7.5) ~k (x) = S(k ,h)oq (x) , k-N ,-N+l,.. ,N

,~~~ x-a
- -~

We then set

(7.6) ~~(x) = (K~~)(x) , j=-N-l,-N ,. . . ,N+l

and we approximate on F by (7.4), namely

N+ 1
(7.7) ~~(x) � 

~j N (x) = 

k=~~4 1 
eJk ~~~~

Upon substituting these approximations into (7.1) , we arrive at the system of
equations

- —-~ —~— -~~--- --—~~- —
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N+l
(7.8) C

k ~ 
eJk c

J = d
k , k=-N-l,-N,... ,N+l -

j=-N-l

for determining the ck
The most difficult part of the procedure is the accurate approximation of

(x) in Eq. (7.6) . To this end , the approximations in Secs . 3 and 4 are

frequently helpful , especially for the case of important singular integral equa-

tions arising in applications . Assuming that by taking~ h = [-Tr d/ (ctN) ]~~
’2 we

can approximate g in (7.4) and in (7.6) to within an error of

O(Nl~
’2exp[~(TrdctN)V2]) , the resulting approximation of f by 

~N 
is accurate

to within an error of O(N3”2exp[-(irdc~N) 1~
’2])

Let us illustrate the solution of some integral equations via examples .

EXAMPLE 7.1: A Volterra Integral Equation. Let us consider the approximate

solution of the Vol-terra integral equation
1

(7.9) f( x) = I [k(t)f(t) +g(t)]dt + r(x) , x E [0,1]Jo

by use of the formula (4.58) . Let V be defined by (4.9), and let k,g and

r G B(V) . We assume furthen~,re that r E LIPa [O~l] , a >  0 , and that (7.9)

has a solution f E B(V) fl Lip [0 ,1] . The method we shall describe for ob-

tainiiig an approximate solution of f in (7.9) may also be applied to get an

approximate solution of the initial value problem

(7.10) = A(x)y + b(x) , x E (0,1) 
~~(~~)

in which b , y and are vectors and A is a matrix.

I

_ _ _ _ _  _ _  _ _ _ _ _ _  _ _  -~~~~ 

-
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Let us approximate f and r on - [0,1] by

N+l
f( x) ~ fN (x) = c. ~p.(x)j =-N- l ~

N+l
r(x) 

~ 
rN(x) = p . ~p .(x)

j=-N-l ~ 3

= 1-x , 
~N+l~~ 

= x

(7.11)
= S(j ,h)olog ~~~~~~ , j = -N , -N+ l , . ..  ,N

= r(0) ~~~~~ = r(1)

p
~ 

= -(l-zj)Q N_l-zjP + r(z~)

z~ = ½~~½ tanh (jh/2)

Substituting these expressions into (7 .9) , using (4.58) and making the

approximation J g(x)dx ~ h ~~~N 
z~ (1-z~)g( z~) , we get the system of

equations

c N l  =

= h j~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(7.12) k~j hJN ~k-L~ 
+

h~~ z~ (l-z~) [k~ {c~+(l-z~ )c~~ 1+z~~ +1}+g~] ~~ +l

Taking h = [-ird/(aN)J 1”2 and solving this system for the ck we get the

-1 approximation 
~N ~~ (7.11) , which differs from f by less than C1N2e ~~~~~

---
~~~

--- _
~~

&_ S  - - - — - -- — 

~ — -~ - -  - — — - — ~~ —-— -~~~ — ----~--—----- —- -- -- - - - - - -  -
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where C1 depends only on k ,g, r and a

I
EXAMPLE 7.2:

Consider the solution of the problem

(7.13) f( x) = j k(x-t)f(t)dt+g(x) , x > 0
0

where k E L1(R)r~L
2(R) and 

J ~~ 

Ig(t)1 2 dt < c o  J g ( t ) I d t  <~~~ . Let us

assume that the transforms

(7.14) K(x) = 
JR 

e”~k(t)dt , ç(x) = J e~~
tg(t)dt

can be explicitly expressed. Let K(x) * 1 , and let J d log[1-K(x)] = 0

Then the problem (7.13) has a unique solution £ on (O ,co) . For given F

let PF be defined as in (3.37). Then the Fourier transform F.,. of the

solution to (7.13) may be expressed via the formula

(7.15) F,. = exp[~~] [G~+P{G~[exp{(1-P)~}-l}}]

where ~ = -log[1-K] . The formula (3.48) may now be used to approximate

(1-P)~ , and P of the remaining function in (7.15) . Using (3.17) , f ( t )

may therefore be approximated by a truncated Fourier series on (0, u /h) . The

details are carried out in [46 ,47] . The convergence of this approximation

procedure is proved in [43,461.

EXAMPLE 7.3:

The approximations of this paper were effectively used in [36] for ob-

taining approximate solutions of integral equations of the form

-- ~~~~~~~~-— ~~~~~~~ — . -—~~~~~~~~ - 
- - - - . 

I
-
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(7.16) f(P) = AJJ 
F(P,Q) f (Q) dAQ + G (P) ,P E S

where S is a surface in R3 
, forming the boundary of a bounded region V

For example , the solution of the Neumann problem over a volume V with surface

S

(7.17) ,~u = 0  in V ,~~~- = G  on - S

can be represented as a single layer potential

(7.18) u(P) = JJ ~~~~~~~ , p E V.

* 
S P-QI ~

The unknown density function ~t then satisfies the integral equation

+ .~L JJ ~~~~
— 
~~~~~~~~~~~

(7.19) S

= g(P) 
~~~~~~~~2ff ‘

This equation has eigenvalue 1, and from the Fredhoiin alternative, we must have

JJ g(Q) dA~ = o , in order for a solution to exist.

In problems of the type (7.16) or (7.19) arising in applications S is

a Liapunov surface, and we generally expect to be able to subdivide S into a

relatively small number of patches , S = U~~ 1 5L so that :

(i) For each 2=1 ,2,... ,L , SL can be parametrized over S = [-l ,1]x [-l ,l]

call the parametrization map

(7.20) T~ : S S~ .

— —~~--- .~~& — 
-~ S~~ __i—____-_ -ii——— — — — — — —  

-

~~ 

-, ~0 — —______________
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Let T~ take the form

(7.21) T~ (x ,y) = (41~ (x ,y) , 42~ (x ,y) , 43~ (x ,y) )

where (x,y) E S . We assume moreover that for each fixed y(rsp.x) E [-1 ,1]

each ~~~~ ,y)(rsp.43~ (x,o)) E B(V) flLiPa[~
l
~
l] , where a > 0 and where

V is defined as in (4.9);

(ii) If P E S~, , then G(T~) , satisfies the above conditions that
- 

~~~ satisfies.

These assumptions enable us to reduce the equation (7.16) over S to a

system of integral equations over S . The approximation procedure which is

then applied is most simply described by considering the case L = 1 . In

this case the resulting equation over S takes the form

ç1 r 1 F(x,y;~1n)(7.22) p(x,y) + I I ______________ 
p(~ ,n) = G(x,y)

J~~l J ~~l 2 2v’( x-~ ) + (y-r~)

where F(.,y;~ ,~) and G(•,y) (rsp. F(x ,•;~ ,ri) and G(x,.)) belong to

B(V)C’
~
LiPa[~l~l] as functions of x (rsp. y) with the remaining variables

fixed in [-1 ,1] .

If f is as arbitrary continuous function defined on [-1 ,1] , let us

set

N
(7.23) EN f(X) ) = 

~ 
f(zk)S(k,h)o4(x)k=-N -

where the and ~ are defined in (4.10). We then approximate j.t (and

similarly , G) on S by
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N+ 1
(7.24) u(x,y) ~ 1..t~(x ,y) = 

~ ~~k ~) .~~(X ,y)
j,k=-N-l ~

where

= S(j ,h)oq (x) S(k ,h)°~~(y)

j,k = -N ,-N+l,... ,N

= (2j~
)S(k ,h)~~~(y)

= (1~~ )S(k ,h)o~~(y)

= (~~~)S(j,h)o~ (x)

(7.25) 1PJ , N+l (x~Y) = (!~X~)S(j,h)o~(x)

=,y1 ‘- 2 ‘~ 2

= (~~~~.)(!Z)

l+x 1-v
~N+1 ,_N_ 1(x ,y) = 

~~~~~~

=

We are thus led to a system of (2N+3)2 equation in (ZN+3)2 ~~~~~~
By taking h = [-wd/ (aN) 

1/2 the solution of this system yields the approximation —

(7.24) which approximates U Ofl S to within an error of O(Ne aN)½)

‘4
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For example, if V is the unit ball and g(x ,y,z) = cz(1-3z2 ) on S

where a = const., then (7.17) has the solution

(7.26) u(x ,y,z) = x2+y2-2z2+k

in V , where k is an arbitrary constant . This problem was solved in [ 36

by use of the approximation (7.24), and the resulting matrix equation was

then solved by use of Singular Value Decomposition [15]; by taking N=2 and

using the symmetry of the problem made it possible to reduce the solution to

that of a singular system of equations of order 13, yielding 3 places of

accuracy .

EXAMPLE 7.4: Other Examples.

(a) In [8] the Helmholz problem ~u = k2u subject to Dirichlet boundary

conditions was solved on the exterior of a bounded region W in the plane,

via an integral equation method, using the methods in Sec. 4. It was assumed

that the boundary L of W consists of a finite number of analytic arcs L~
with the property that the mappings as well as the function g(cp~) are

in B(V) C
~
LiPa

{_l
~l] , where

(7.27) : [-1,1] + L~

where V is defined as in (4.9), and where g denotes th~ boundary value of

u on L .

(b) In [19] the Hilbert problem

(7.28) F~ (t) G(t) F_ (t) + H(t) , t E L

— - - - —- - -- —-— —r — - —- -
~~~~~

-— —-.—-— - 
- - — ~ . -J a - - - -
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was solved in the complex plane via methods in Sec. 4. It was assumed in [19]

that L consists of a finite number of non-overlapping closed contours in the

complex plane , and that these are made up of a finite number of analytic arcs

L~ which can be defined in the same fashion as the L
5 

in (a) above , and such

that each of the functions G(q.) and H(~~) are in B(V)fl Lip [-1,l] , where

V is defined in (4.9).

(c) In [32], the problem of determining the three-dimensional electric field

scattered by an axially symmetric body V in a plane wave was solved via the

solution of an integral equation over the surface S of B via the methods

* of Sec. 4 of this paper. It was assumed in [32] that the surface S is

described by

S = {(x ,y,z) : x2+y2 = f (z ) }

where £ E B(V) , V as in (4.9), and such that on (-1 ,1)

2 ct20 < C1(1-z ) < f(z) < C2(1-z ) -

where a1 and a2 are in (0,1) .

t _ 
_ _ _  _
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8. CCMPUTER IMPLEMENTATION AND PITFALLS.

8.1 Computer Algorithms.

Some of the formulas of the previous section have already been implemented

via computer programs . Included ait~ng these is an automatic integration pro-

gram over an arbitrary interval (a,b) using the formulas in Sec. 4.2 [35],

programs for evaluating each of the transforms (5.1)- (5.4) [22], programs for

the approximate solution of each of the problems of the examples in Sec. 6 , and

programs for the approximate solution of the problems in Examples 2, 3 and 4
in Sec. 7, as well as in programs for computing the solution to a Hilbert

problem.

Let us briefly describe the implementation of the quadrature program [35].

Let £ E 8(V) , and consider the approximation

f(zk(h))(8.1) f(x)dx 
~ T~

(f) h ~k~”-”° 4’(zk(h) )

Let us also set

f(z k(8.2) Mh (f)
~~~h Z  2

k - ~

so that

(8.3) T~~/2) (f) • .

~~~ 
[Th (f) 4tn (f) ]

The error bowtd in (4.31) shows that when h is replaced by ½h , the correct
number of significant figures in the approximation (8.1) double.

4

.----——---- ~~~~.. 
0- 

— ---- —- ;—ç;:~.. ~
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Assume then , that we start with h 1  (say) and then compute Th(f) . Next,

we compute M~(f) , so that if the difference

(8.4) Th (f) - = c

then

(8.5) T (h/2) (f) = 
~(Th(f) + ~~ f)] = O(C2) <

In practice we cannot sun all of the terms in the infinite sums (8.1) and

(8.2). The assumption that

(8.6) f(x) O(e~~~~~~’) on r , a > 0
~~

‘ (x)

then offers a convenient stopping criteria in approximating the infinite sums.

Suppose that we stop the sunlnations (8.1) for k >  0 when

(8.7) f(z N) 
~
= O(e~~~~)) < e/3

~
) ( Z N)

Then we may expect that

h 
f(zk(h)) < O ( h ~ e~~ th) * 

-

k—R i ~‘(zk (h) ) k—N+i

~ -cz(N+l)h
(8.8) * O(” C 

-~~~~~1-c

— O(e~~~~) • 0(c)

That is , we may expect the tail of the series to be of the same order of magnitude

as the last included term. In order to avoid stopping the algorithm at or
4 near a zero of ~ in practice , we make the more reliable test

.--— ----
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(8.9) 
If(
~~)I + 

If(~~ 1)t 
+ 

If(zN+2)J

~~
‘ (ZN) 

~~
‘ (z~~1) ~~

‘ (ZN+2)

A similar test is carried out for negative k since the fuiction f(x) /4 ’ (x)

may converge to zero at different rates , as x-’a or as x+b along r
These ideas form the basis for the automat ic integration algorithm in [35].

4-

, I _________________________________________ ________________________________________ _________ ____________

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~:: .~~~~~~
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8.2. Pitfalls in Computation.

The accuracy of the formulas of this paper, in spite of singularities at an

end-point of an interval is based on our being able to accurately compute the

function values at the points zk . Consider, for example, the evaluation of

r l -½
(8.10) I = I (l-x 2) dx

.1 -l

via the formula (4.34), in 16 significant figure floating point arithmetic [Si).

The points zk(h) [e~~-l]/[e~~+l] cluster about +1 (rsp . -1) for k large

and positive (rsp. negative), and the formula (4.34) may fail, due to roundoff

error, resulting in the inaccurate evaluation of [l-zk
2(h)]

~~ 
. For example,

if we take h log2 , k—54 , the computed value of zk(h) is

.99999 99999 99999 0 , so that the computed value of (l-zk
2)
~~ 

is 4

.707•• . xl0~ . The actual value of (l-zk
2)
~~ 

computed by means of the formula

(l-zk
2)
~~ 

- (i+eth)/ (2e~~~2) is .671... x:i.o8 
. Hence due to roundoff, the

term
I

2~~ 2~~ 2 1th 2~~(8.11) h 
{(1+:~~

2 [i
~zk ] + th 2 [lZk i }

contributes as error of . 554. . . Xl0~~~
0 to the numerical approximation.

54 ,k+1 ~k , ~~-½
(8.12) logh2 ~ k ~ 

[l-(’k ’)~J
k—-5 4 (1+2 ) 2 +1

of I . That is , it is possible to achieve no more than 10 significant figures

of accuracy. If we had carried the sunination from -58 to 58 instead of

from -54 to 54 the situation would have been considerably worse. In that

-

~~~~~~~ ~~~ ~

- — ___________________________________

a - .~~ 
-

~ ~~~~~~

- ~~~~~ 
.4_ •_ :, -



case z 58 = [258~l]/[2
58+1] is computed to be 1.00000 00000 00000 so that an

error message results , since the computer cannot evaluate (l.C-l.0)~~
We emphasize that the above difficulty can be easily remedied , simply by

computing the terms [l
~
Zk l by means of the expression [1+e~~]/ (2e~~”2 )

Similarly , the formula (see Eq. (4.14))

(8.13) Zk — log[elth+,, i+e Z~~

is not an accurate formula for computing Zk for the approximations (4.29) ,

and (4.38) when e~~ < .01 , in that case the formula

(8.14)

is preferable.

Accurate computation of the coefficients is equally important for the case

of the fornulas in Sec. 4.3, used for the approximation of derivatives over

finite and semi - infinite intervals. For example , a small error in the compu-

tation of f(z N) or (1-ZN
2) can cause a large error in the approximation

of a derivative in the expression

N f (z j  m 1+(8.15) f(x) ~~ ‘S 

m (l-x
2) S(k,h)olog 

~~~~~~~~k--N cl~~
2

used to approximate f, f’ ,. . .  , f(m) on [-1,11

There is one additional pitfall which we have encountered . For examp le ,

let V be defined as in (4.9) , let f E B(V) , and let I f(x) < C(1-x2) on

(-1,1) , where C> 0 . Then the approximation

(8.16) f(x) 
~ J-N 

f(z~)S(k,h)olog (
~~

)

-~~ 
—



-98-

in which h = (~rd/N)~ ”2 
, z~ = (e~~-1)/(e~~+l) is accurate for moderate values

of N if the numbers f(zk) are computed accurately , and moreover , the

approximation

~
f(z N)

(8.17) f’(l) 
~

is then accurate. Suppose, for exanip le, that f is of the order of 1 , and

that the approximation (8.16) is within l0~~ of £ for all x E [-1 ,1]

An error of io -6 in the computed values of Zk would not change this accuracy.

However , since f(x) + 0 as x + ±1 , we may have f(z N) = ~40
6 

, and an

error of 10 6 in f(z N) will produce a very large error in the approximation

(8.17) . We must therefore warn against using the computed f(z k) ---especially

those obtained as an approximate solution to a problem via the use of

S(k,h)°4(x) as basis functions--to approximate the derivatives of f at or

near an end-point of an interval.

-I

I , - ----—~~~~~ - - - ..~~~ - _-— ‘
——- ---.- ---- -- - — — — —  

~~
i_ _ 
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9. OPTIMAL IT? OF THE APPROXIMATIONS.

½
The results of this section show that the O(e~~” ) rate of convergence

of the methods of this paper cannot be improved. While the functions S(k,h)°~
form a basis giving this rate of convergence , they are not the only ones ;

rational functions may also be used to achieve this rate of convergence [48,52].

The order of the error of approximate methods based on polynomials and

trigonometric functions is well known (see e.g. [2]) for many classes of

functions . We briefly cite some of these, for purposes of comparing methods of

approximation with or without the presence of a singularity. -

Let denote the family of polynomials of degree ~ n

fl1E0R~4 9.1 [2] : Let p > 1 , and let denote the ellipse with foci at

±1 and sun of semi-ones equal to p . Let £ be analytic and bounded in

Then

(9.1) inf sup I f(x) -p(x) I — 0(p~~) ,

p EP~ -l<x<l

That is , the error of approximation converges to zero at the 0(e~~~)

rate. The rate of convergence (9.1) is best possible with regard to order.

The rate of convergence of the error of approximation by polynomials is

considerably slower if a singularity is present at an end-point of an interval.

An example of this is illustrated in the following theorem.

ThEOR~ 1 9.2 [2] : Let 0 < a  < 1 . Then there exist positive constants C1

t and C2 such that

- -—-  - - —- — -- - —- -  — - -- - - _ _
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(9.2) —~~~ ~ inf sup I (l~~X
Z

)
a

~ P(X) I
n pE]P~ -1<x<l n

The same drastic change in the rate of convergence depending on whether

a singularity is pre sent or absent occurs also for quadrature formulas constructed

on the basis of the formulas being exact for polynomials of a certain degree .

For example , let the numl,ers x~ 
(n) and (n) 

, ~ —1 ,2 ,... ,n ; n—l .2 ,.. . ,

be the Legendre -Gauss nodes and weights, so that the approximation

(9.3) J f(x)dx ~ ~ w~~’~ f(x~~~~)
1 j= l

is exact wherever f E P2 1 .  Then we have

ThEOR~I4 9 .3 [40 ]: Let f satisfy the conditions in Theore m. 9.1. Then

(9.4) f f(x) dx - 

~ 
w.~~~ f(x.~~~) = O(p 2

~) , n-’~-l j —l ~

The number p on the right hand side of (9.4) cannot be replaced by a

smal ler number.

The presence of a singularity of f at ±1 changes this rate of convergence

drastically, as illustrated in the following theorem.

THEORE4 9.4 [10]: Let ~~~~~~ and x~~~-’~ be defined as in (9.3) . If cx > 0

and not an integer, then

- 

j~ l ~~~~~~~~~~~~~~~

(9.5)

where c(a) depends only on a.

_ _ _ _ _  
_______________ _ _ _ _ _ _ _ _ _ _ _  _______-________
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For the methods of this paper, the error converges to zero at the O(e ~ )
rate , whether or not singul arities are present at an end-point of an interval .

The best value of c in this O(e~~’~~) rate depends somewhat , but only mildly,

on the particular type of singularity.

We m ay the re fore seek after methods which work well in spite of the presence

of a large class of singularities, and then try to determine which , among these

are the best.

Let us first choose a space of functions with singularities, for purposes of

approximation on [-1 ,1]

If p > 1 , the space H~(U) is a convenient and well known space of

functions in analytic function theory. H~(U) consists of the family of all

functions f that are analytic in the unit disc U in the complex plane , and

for which

2ir iO ~ 
1/p

(9.6) N f l  — lim If(re )
~ do <~~

~ r.l 0

Thus H~(U) contains functions which may or may not have singularities at the

end-points of the interval [-1,1] , such as f(x) — (l-x)~~ (l+x~~
81og(l-x) ,

where cz ,8 < 1/p , or f(x) — e~X 
, etc . The closer p is to 1 , the

larger the space H~(U) , since , for example , if 1 < p ’ <p , and if

f E U1, (U) , then f E 
~1,

, (U) , whereas U1,, (U) has in it functions that are

not in H1, (U) , such as , for example , the function f (x) - (1 -x2) -

Next , given the space lt~(U) , let us consider the error of approximation

(9.7) I CE) - Q~(f)

where f E H ~(U) ,

-~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~

-
~~~: 

— 

T~~
-
~~
1:- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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- (9.8) 1(f) = f f(x)dx , ~ (f) - 

~ 

w~~~~f(x~~~~)

and where wi (n) 
~~ , 

~ 
E U . Let us set

(9.9) a = inf sup 1(f) -

~~ 
W~
(n)E(I,X~

(n)EU f€H~(U)~lfN~-1

The numbers ~~~~ determine the best possible rate of convergence to zero of

the quadrature error . At this t ime, the exact values of the ~~~ and the

correspondin g quadra ture rules Q~=%* for which 11(f) ~%* (f) I 
~ 

a1~ El

for all f E H~ (U) are not known. A number of papers have been written on

the estimation of upper bounds for a [4,5,17,20,23,50,52,58] and some havep ,n
also been written on lower bounds [4 ,50 ,52]. The results of the following

theorem give the best bounds known to date .

THEOREM 9.5 [52] : Let q—p/(p-l) . Given any ~ > 0  there exists an integer

n(s) > 0 such that whenever n > n(c) , then

(9 .10) ~~~~~~~~~~~~~~~~ < a  ~ e~~(-{ 
~ ½ 

- £}n112]
(2q)

We remark that the formulas (4.34) of the present paper converge at the

rate on the extreme right hand side of (9 .10) , for every p > 1 , and the

formulas in (4 ,48] also converge at this rate . No formulas are known at this

time which converge at a faster rate.

Next , for purposes of interpolation on [-1,1] , let p > 1 , let

H1,* (U) denote the family of all functions g such that f E H1, (U) , where

f(z) - g(z)/( 1-z 2) , and let H1,*(U) be normed by 1 g1 - lfl
1, where lfl~

-
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is defined in (4.6) . Let CT~}~ be a linear inte rpolation scheme defined
n= 1

by

(9.11) T~(g)(x) = 

j~l 
~~~~~~~~~~~

where x~01) € U where 
~n j 

is analytic in U for each n and j , and

such that

(9.12) I T~(g)l~ < C11g1

for all g E H~(U) , where C is a constant independent of n . Let us set

(9.13) T n = inf sup sup I f(x) -T~(f) (x) I
~~
‘ T~ f E H ~(U) , l f l -l -l<~c<l

THEOREM 9.6 [52] : Given any c > 0 , the re exists an intege r n(c)>O , such

that whenever n > n(c) and q-p/ (p-l)

(9.14) ex~(-(5~~
2ir+s)n~

”2] ~ ~~~ ~ exp[-(fç -~ )n 1”2 ]

These upper and lower bounds are the best onss known to date. The fornulas

(4 . 19) of the present paper with p(x) - log((l+x)/ (l-x) ] converge at the

• rate on the extreme right of (9.14) . A rational function has also been con-

structed for interpolation of functions in H~ (U) over [-1 ,1] [52] ; this

also converges at the rate on the extreme right of (9 .14) . No formulas are

known at this t ime which converge at a faster rate .

Theorem 9.1-9.4 show that the formulas of this pap er are not as good as

polynomials in the absence of singularities , but they are much better when

singularities are present .

____ ~~~~~~
_ 

~~~~~~~~~~ -.
. -
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In [52] one finds definitions of other spaces of functions with the

— property that each of the formulas of Sec. 4.2 (rsp . Sec. 4.1) enjoys the

O(exp[- ( ~ 
~ EJ ~l/Z fl (rsp . O(exp[-1_ !~ -e} n1”2 ]) rate oi convergence in

(2q) 2q

these spaces .

I

- P 
J

- 
- —--———.—-- -~~~~~- — _ 
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